sklearn实现线性回归时默认采用R2指标。R2越大,表示模型越好。 R2的好处在于其结果进行归一化,更容易看出模型间的差距。 R2≤1 R2越大越好。当我们预测的模型完全准确时,R2等于最大值1 当R2<0时,说明模型还不如基准模型,很可能数据不存在任何线性关系 # 自定义defR2(y_true, y_pred): u = np.sum((y_t...
这个式子的结果就是第一个模型评价指标:均方误差 MSE(Mean Squared Error)。 针对上面举例的两个模型,他们的 MSE 分别是 10(100/10)和 4 (200/50),所以后者模型效果更好。 2、均方根误差:RMSE(Root Mean Squard Error) 但是,MSE公式有一个问题是会改变量纲。因为公式平方了,比如说 y 值的单位是万元,MSE...
RMSE 与 MAE 的量纲相同,但求出结果后我们会发现RMSE比MAE的要大一些。 这是因为RMSE是先对误差进行平方的累加后再开方,它其实是放大了较大误差之间的差距。 而MAE反应的就是真实误差。因此在衡量中使RMSE的值越小其意义越大,因为它的值能反映其最大误差也是比较小的。 衡量线性回归法最好的指标 R Squared 对...
2、均方根误差:RMSE(Root Mean Squard Error) 可以看出,RMSE=sqrt(MSE)。 3、平均绝对误差:MAE(Mean Absolute Error) 以上各指标,根据不同业务,会有不同的值大小,不具有可读性,因此还可以使用以下方式进行评测。 4、决定系数:R2(R-Square) def R2(y_test, y_true): return 1 - ((y_test - y_true)...
1、均方误差(Mean Square Error,MSE) 2、均方根误差(Root Mean Square Error,RMSE) 3、平均绝对误差(Mean Absolute Error,MAE) MAE=1n∑i=1n|yi−yi~|,∈[0,+∞) 4、R2分数(1-模型没有捕获的信息量占真实标签中所携带的信息量的比例) 分母是真实值的方差,方差越大,携带信息量越多。R2越接近1越好...
而MAE反应的就是真实误差。因此在衡量中使RMSE的值越小其意义越大,因为它的值能反映其最大误差也是比较小的。 衡量线性回归法最好的指标 R Squared 对于上述的衡量方法,都存在的问题在于,没有一个上下限,比如我们使用auc,其上限为1,则越接近1代表模型越好,0.5附近代表模型和随机猜测基本差不多性能很差,实际上...
一、MSE、RMSE、MAE的含义和计算 我们以一个预测气温的回归模型为例,模型计算出未来15天的气温(预测值),15天过后我们可以得到每天的实际气温(实际值),我们以此数据为基础,来计算该模型预测值与实际值的差异。 最直接的计算方式,就是计算每天气温的差值,并把差值相加即可。
简介:回归模型是预测模型的一种,主要用于预测一个或多个因变量与一个或多个自变量之间的依赖关系。为了评估回归模型的性能,需要使用一系列评价指标。这些指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数R2 score。这些指标各有特点,可用于不同情况下的模型评估。
一、MSE、RMSE、MAE的含义和计算 我们以一个预测气温的回归模型为例,模型计算出未来15天的气温(预测值),15天过后我们可以得到每天的实际气温(实际值),我们以此数据为基础,来计算该模型预测值与实际值的差异。 最直接的计算方式,就是计算每天气温的差值,并把差值相加即可。
相比MSE来说,MAE在数据里有不利于预测结果异常值的情况下鲁棒性更好。 SD(Standard Deviation)标准差 方差的算术平均根。用于衡量一组数值的离散程度。 R2(R- Square)拟合优度 R2=SSR/SST=1-SSE/SST 其中:SST=SSR+SSE, SST(total sum of squares)为总离差平方和, ...