F1 Score的计算公式为:2 * (精确率 * 召回率) / (精确率 + 召回率)。对于狗类别,F1 Score为2 * (0.67 * 0.67) / (0.67 + 0.67) ≈ 0.67。对于猫类别,F1 Score为2 * (0.75 * 0.75) / (0.75 + 0.75) ≈ 0.75。对于鸟类别,F1 Score为2 * (0.67 * 0.67) / (0.67 + 0.67) ≈ 0.67。
我之前一直认为F-measure是R和P的调和平均,所以不会存在F1不在P和R之间的情况,后面经人提醒,说sklearn的文档上说This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall. 所以我决定研究一番,发现别有洞天。 下面解释这个问题。我们有...
F1score F1score(以下简称F1)是用来评价二元分类器的度量,它的计算方法如下: F 1    =    2 1 p r e c i s i o n + 1 r e c a l l = 2 p r e c i s i o n × r e c a l l p r e c i s o n + r e c a l l F1\;=\;\frac2{ {\displayst...
下面调用sklearn的api进行验证 fromsklearn.metricsimportf1_scoref1_score([0,0,0,0,1,1,1,2,2],[0,0,1,2,1,1,2,1,2],average="micro")0.5555555555555556 可以看出,计算结果也是一致的(保留精度问题)。 Macro F1 不同于micro f1,macro f1需要先计算出每一个类别的准召及其f1 score,然后通过求均...
F1 score Precision和Recall是一对矛盾的度量,一般来说,Precision高时,Recall值往往偏低;而Precision值低时,Recall值往往偏高。当分类置信度高时,Precision偏高;分类置信度低时,Recall偏高。为了能够综合考虑这两个指标,F-measure被提出(Precision和Recall的加权调和平均),即: ...
对于F1-score,更一般的有: 可以看出,F1-score是一个综合的评价指标。对于precision和recall的选择,个人认为应该根据实际的应用场景来,最后想要的是更多的检测出想要的样本,还是尽量少出错。 4、指标的选择问题 例如,在一个癌症病人的检测系统里,我们更希望的是,尽可能多的检测出癌症病人,因为希望它们能得到及时的治...
PRF值分别表示准确率(Precision)、召回率(Recall)和F1值(F1-score),有机器学习基础的小伙伴应该比较熟悉。 根据标题,先区别一下“多分类”与“多标签”: 多分类:表示分类任务中有多个类别,但是对于每个样本有且仅有一个标签,例如一张动物图片,它只可能是猫,狗,虎等中的一种标签(二分类特指分类任务中只有两个...
F1 score是一个权衡Precision和Recall 的指标,他表示为这两个值的调和平均。 4. Macro 当任务为多分类任务时,precision和recall的计算方式就需要权衡每一类的 和 ,Micro和Macro就是两种不同的权衡方式。 对于每一类的precision和recall有: macro的precision公式,即每一类的precision的平均,为: ...
F1-Score(F1分数或F1-Measure)是分类任务的一个衡量指标,用于权衡Precision和Recall。换句话说,F1-Score是精确率和召回率的调和平均数: 2.2 Micro-F1 假设第 类预测正确的总个数为,预测错误的总个数为,实际为该类却未被预测到的总个数为。先计算出所有类别的总的Precision和Recall: ...
2、F1_score中关于参数average的用法描述和理解: 通过参数用法描述,想必大家从字面层次也能理解他是什么意思,micro就是先计算所有的TP,FN , FP的个数后,然后再利上文提到公式计算出F1 macro其实就是先计算出每个类别的F1值,然后去平均,比如下面多分类问题,总共有1,2,3,4这4个类别,我们可以先算出1的F1,2的...