Probabilistic Machine Learning An Introduction 概率机器学习 导论 精装 英文原版 英文版 作者:Kevin出版社:MIT Press出版时间:2022年07月 手机专享价 ¥ 当当价 降价通知 ¥1065 配送至 广东广州市 至 北京市东城区 服务 由“瑞雅图书专营店”发货,并提供售后服务。
转自油站 hh0e2HAPTGF4, 视频播放量 292、弹幕量 0、点赞数 4、投硬币枚数 0、收藏人数 5、转发人数 1, 视频作者 北盟网校, 作者简介 本UP原创录制了大量IT教程,内容丰富,欢迎大家关注...,相关视频:【全168集】禁止自学走弯路!回归算法、聚类算法、决策树、随机森林、
《海外直订An Introduction to Machine Learning 机器学习导论》,作者:海外直订An Introduction to Machine Learning 机器学习导论Rebala 著,出版社:Springer,ISBN:9783030157289。
“An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. ...
Every chapter focuses on one machine learning technique, providing detailed information on the intuition behind it, how it works, what it’s used for, and a good number of Python examples. The book covers not only machine learning but also deep learning, offering a great introduction toKerasand...
The book is organized as follows: Introduction (Chapter 1), Evaluation (Chapter 2), Supervised learning (Chapters 3, 4, and 5), Unsupervised learning (Chapter 6), Representation learning (Chapter 7), Problem decomposition (Chapter 8), Ensemble learning (Chapter 9), Deep learning (Chapter 10)...
[Online]. Available: http://www.springer. com/us/book/9783319348865.Kubat M. An Introduction to Machine Learning. Springer; 2017.Miroslav Kubat. 2016. An Introduction to Machine Learning. Springer.M. Kubat, An Introduction to Machine Learning. Springer International Publishing, 2015....
《预订An Introduction to Machine Learning [ISBN:9783030157289]》,作者:预订An Introduction to Machine Learning [ISBN:9783030157289]Rebala 著,出版社:Springer,ISBN:9783030157289。
Adaptive Computation and Machine Learning(共35册), 这套丛书还有 《Boosting》《Veridical Data Science》《Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning)》《Probabilistic Graphical Models》《Reinforcement Learning (2/e)》等。
Adaptive Computation and Machine Learning(共36册),这套丛书还有 《Knowledge Graphs》《Deep Learning》《Learning Theory from First Principles》《Machine Learning in Non-Stationary Environments》《Distributional Reinforcement Learning》等。 我来说两句 短评 ··· 热门 还没人写过短评呢 我要写书评 In...