首先,使用 Microsoft 或 GitHub 帳戶登入 Azure DevOps。 登入之後,您可以建立 組織。 中的新組織 在組織內,您可以在 建立多個專案。 中的新專案 針對每個專案,您將能夠存取 Boards、Repos和Pipelines 等工具,以在您的專案中套用 DevOps 原則。 將Azure DevOps 連...
The good news is that machine learning (ML) can help development teams break through this seemingly intractable MTTR barrier, transforming incident management (IM) into not only a core competency but also an enabler of successful DevOps. The IM Conundrum Development teams struggle wit...
或者,您也可以直接存取 Azure Machine Learning 筆記本內的所有流程資料夾。程式碼存放庫中的版本設定提示流程將流程簽入您的程式碼存放庫,您可以輕鬆地將流程資料夾從流程撰寫頁面匯出至本機系統。 這會下載套件,其中包含從總管到本機電腦的所有檔案,然後您可以將其簽入您的程式碼存放庫。如需DevOps 與 Azu...
一個Azure Machine Learning 作業等待作業只能等待一個作業。 您必須為您想要等待的每個作業設定個別的作業。 Azure Machine Learning 作業等待工作最多可以等待 2 天。 這是 Azure DevOps Pipelines 所設定的硬性限制。 yml 複製 - job: WaitForAzureMLJobCompletion displayName: Wait for AzureML Job Completion ...
Discover free DevOps, Machine Learning, and Artificial Intelligence resources in Kolkata. Explore tutorials, workshops, and community support to upskill and advance your career
Platinum Enterprise Solutions is a leading IT company offering Solutions in DevOps, Big Data, Data Science Solutions to enterprises for Digital Transformation.
Your career is defined by what you know and how well you know it. With our platform, you can benchmark and prove your knowledge, keep up with emerging trends and build in-demand skills in areas like DevOps, machine learning, cloud, security and infrastructure. Learn more...
End-to-end tool chain boosts development efficiency by 50% and fosters collaboration in DataOps, MLOps, and DevOps. Cost-effective AI Compute Diverse compute with various specifications powers large-scale distributed training and inference acceleration. ...
We recently visited with Christian Beedgen, CTO at Sumo Logic, to discuss impact of DevOps and machine learning for the upcoming year.As the co-founder and CTO of Sumo Logic, Christian has 15 years experience creating enterprise software architecture. Pr
Azure Machine Learning 可讓您與 Azure DevOps 管線整合,自動化機器學習生命週期。 您可以自動化的一些作業包括:Azure Machine Learning 基礎結構的部署 資料準備 (擷取、轉換、載入作業) 使用隨選相應放大和相應增加來定型機器學習模型 將機器學習模型部署為公用或私人 Web 服務 監視已部署的機器學習...