Pytorch LSTM_GCN_IE P1 火车票识别项目介绍 从本节开始,我将带大家完成一个深度学习项目:用图卷积神经网络(GCN),实现一个「火车票文字信息提取」的项目,由于火车票上每个节点文字不是等长的,所以还需要添加一个前置的 LSTM 来提取句子特征。 课前说明 1、这是一个收费课程,如果是在公开平台上可能只是试看,完整...
特征提取学习分析图神经网络传统方法对在线学习文本进行特征筛选往往费时费力且迁移性较差.针对这一问题,根据在线学习文本短,专业词汇多,文本间结构信息丰富等特点,提出基于LSTM/GCN对Doc2Vec所得文本向量中文本–文本关系进行强化的文本嵌入方法,以解决传统方法中文本在投影到嵌入空间后结构信息丢失的问题.并提出指标Mean...
python基于图卷积神经网络GCN-LSTM循环神经网络-SAEs、RNN的交通流量预测目标检测、语义分割、、Re-ID、医学图像分割、目标跟踪、人脸识别、数据增广、人脸检测、显著性目标检测、自动驾驶、人群密度估计、3D目标检测、CNN、AutoML、图像分割、SLAM、实例分割、人体姿态估计
本发明揭示了一种基于LSTM‑GCN的臭氧预测方法,包括如下步骤,通过长短期记忆网络LSTM得到观测点的隐状态,将每个观测点的隐状态构造成图,作为图卷积神经网络GCN的输入,得到所有观测点加权后的隐状态,最后通过线性网络得出预测结果。本发明的方法结合了邻居观测点来辅助目标观测点预测臭氧数据。LSTM网络能起到很好的时序...
《基于GCN-LSTM的空气质量预测系统的设计与实现》一、引言随着城市化进程的加速和工业化的快速发展,空气质量问题日益突出,成为影响人类健康和生活质量的重要因素。因此,建立一套有效的空气质量预测系统,对于提前预警、防控空气污染具有重要意义。近年来,深度学习技术在多个领域取得了显著的成果,其中图卷积神经网络(GCN)和...
GCN(图卷积神经网络)是一种用于处理图结构数据的神经网络。在空气质量预测中,GCN可以用于捕捉不同地区空气质量之间的空间相关性。通过在图上应用卷积操作,GCN可以提取出空间特征,从而提高预测精度。 2. LSTM原理 LSTM(长短期记忆网络)是一种用于处理时间序列数据的神经网络。在空气质量预测中,LSTM可以用于捕捉历史空气...
基于LSTM和GCN的区域电离层TEC预报方法[1] 下载积分: 3000 内容提示: (19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202110576472.1(22)申请日 2021.05.26(71)申请人 江苏师范大学地址 221116 江苏省徐州市铜山新区上海路101号(72)发明人 黄智 唐丝语 (74...
本系统采用基于GCN-LSTM的混合模型架构,以实现对空气质量的精准预测。系统架构主要包括数据预处理模块、GCN模块、LSTM模块和预测输出模块。其中,数据预处理模块负责对原始数据进行清洗、格式化和特征提取;GCN模块用于捕捉空间关系,提取环境因素的空间特征;LSTM模块则用于捕捉时间依赖关系,提取时间序列特征;预测输出模块则根据...
《基于GCN-LSTM的空气质量预测系统的设计与实现》 一、引言 随着城市化进程的加快和工业化的深度发展,空气质量问题日益严重,成为了全球关注的焦点。因此,准确预测空气质量,对环境保护、健康管理和城市规划具有重要意义。近年来,深度学习技术得到了广泛的应用,特别是在时间序列预测方面。本文提出了一种基于图卷积神经网络...
原来是它调用了几个序列,后面用图的行为来做表达。有了图就可以做图上的特征提取,用的是 GCN,GCN 就主要是做特征提取用的。 后续如果做分类,这个分类器呢,一般我们在神经网络过程中会用 FC,它是全连接神经网络,它相当于是一个 MLP。通过后续的全连接,再加 Sigmoid 就实现了一个二分类特征。