然后看看 LSTM 得到的结果,F1 值比原来高了一点点 0.9901,看到这会觉得其实跟原来 1 的结果好像差别不大,实际上差别还是非常明显的。因为原来 AUC 是0.5,它没有预测能力,而现在有预测能力是 0.8677,因此 AUC 这个值相对来说合理一点点。 然后我们把这个 AUC 给绘制出来,AUC 的取值本身是 ROC 的一个面积。
二次分解组合并行CNN-LSTM-GCN的短期负荷预测 一、引言 随着电力系统的快速发展和智能化水平的不断提高,短期负荷预测成为电力系统调度与运行的关键技术之一。为了应对日益增长的数据量和复杂性,本文提出了一种基于二次分解组合并行的CNN-LSTM-GCN模型,用于短期负荷预测。该模型结合了卷积神经网络(CNN)、长短期记忆网络...
python基于图卷积神经网络GCN-LSTM循环神经网络-SAEs、RNN的交通流量预测目标检测、语义分割、、Re-ID、医学图像分割、目标跟踪、人脸识别、数据增广、人脸检测、显著性目标检测、自动驾驶、人群密度估计、3D目标检测、CNN、AutoML、图像分割、SLAM、实例分割、人体姿态估计
《基于GCN-LSTM的空气质量预测系统的设计与实现》一、引言随着城市化进程的加速和工业化的快速发展,空气质量问题日益突出,成为影响人类健康和生活质量的重要因素。因此,建立一套有效的空气质量预测系统,对于提前预警、防控空气污染具有重要意义。近年来,深度学习技术在多个领域取得了显著的成果,其中图卷积神经网络(GCN)和...
本发明揭示了一种基于LSTM‑GCN的臭氧预测方法,包括如下步骤,通过长短期记忆网络LSTM得到观测点的隐状态,将每个观测点的隐状态构造成图,作为图卷积神经网络GCN的输入,得到所有观测点加权后的隐状态,最后通过线性网络得出预测结果。本发明的方法结合了邻居观测点来辅助目标观测点预测臭氧数据。LSTM网络能起到很好的时序...
GCN(图卷积神经网络)是一种用于处理图结构数据的神经网络。在空气质量预测中,GCN可以用于捕捉不同地区空气质量之间的空间相关性。通过在图上应用卷积操作,GCN可以提取出空间特征,从而提高预测精度。 2. LSTM原理 LSTM(长短期记忆网络)是一种用于处理时间序列数据的神经网络。在空气质量预测中,LSTM可以用于捕捉历史空气...
登录 注册 论文 > 毕业论文 > 《基于GCN-LSTM的空气质量预测系统的设计与实现》 下载文档 收藏 打印 转格式 31阅读文档大小:31.91K17页优质文档资料上传于2025-01-03格式:DOCX
本课程介绍用图卷积神经网络(GCN),实现一个「火车票文字信息识别提取」的项目。实验证明,LSTM+GCN网络结构,在身份证、护照、驾驶证、发票、购物小票等证件
在利用GCN提取空间特征时,输入的是单步的数据特征,输出的也是该步的特征。比如GCN输入数据为(None,7...
法律 建筑 互联网 行业资料 政务民生 说明书 生活娱乐 搜试试 续费VIP 立即续费VIP 会员中心 VIP福利社 VIP免费专区 VIP专属特权 客户端 登录 百度文库 建筑 基于GCN-LSTM的日前市场边际电价预测©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | 文库协议 | 网站地图 | 百度营销 ...