基于TCN-LSTM的负荷预测模型构建主要包括以下几个步骤: 输入层:接收预处理后的时间序列数据作为输入。 TCN层:通过TCN网络进行特征提取,捕捉时间序列中的局部和全局依赖关系。 LSTM层:将TCN层的输出作为LSTM网络的输入,进一步捕捉时间序列中的长期依赖关系。 输出层:输出预测结果,即未来某时刻的负荷值。
在真实煤矿瓦斯浓度数据集上对TCN-LSTM模型进行了实验。实验结果表明,TCN-LSTM模型的预测精度明显优于传统的预测方法,如ARIMA和BP神经网络。 5. 结论 本文提出的TCN-LSTM模型是一种有效的多输入单输出瓦斯浓度预测方法。该模型充分利用了TCN和LSTM的优势,提高了预测精度。该模型可以应用于煤矿瓦斯浓度实时监测和预警,...
一、引言 单站点多变量单步预测问题---基于TCN-LSTM实现多变量时间序列预测股票价格。 注:TCN+LSTM是一种将卷积神经网络(CNN)和LSTM结合起来的模型。时间序列卷积(Temporal Convolutional Network, TCN)通过一系列卷积层处理数据,每个层都能捕捉到不同时间范围内的模式。LSTM作为多元预测机制和单元预测机制的优点是可以...
CNN、LSTM、Transformer、TCN、串行模型、并行分类模型、时频图像分类、EMD分解结合深度学习模型等集合都在这里:全网最低价,入门轴承故障诊断最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购
模型描述 程序设计 参考资料 预测效果 基本介绍 1.Matlab实现TCN-LSTM时间卷积神经网络结合长短期记忆神经网络多变量回归预测; 2.运行环境为Matlab2021b; 3.输入多个特征,输出单个变量,多变量回归预测; 4.data为数据集,excel数据,前7列输入,最后1列输出,MainTCN_LSTMNN.m为主程序,运行即可,所有文件放在一个文件夹...
2.1 定义CNN-LSTM网络模型 2.2 设置参数,训练模型 50个epoch,MSE 极小,CNN-LSTM回归预测模型预测效果显著,模型能够充分提取数据特征,收敛速度快,性能优越,预测精度高,适当调整模型参数,还可以进一步提高模型预测表现。 注意调整参数: 可以适当增加CNN层数和每层通道数,微调学习率; ...
TCN全称Temporal Convolutional Network,时序卷积网络,是在2018年提出的一个卷积模型,但是可以用来处理时间序列。 2 卷积如何处理时间序列 时间序列预测,最容易想到的就是那个马尔可夫模型:P(yk|xk,xk−1,...,x1) 就是计算某一个时刻的输出值,已知条件就是这个时刻之前的所有特征值。上面公式中,P表示概率,可以不...
🎉发现了一个比LSTM更先进、更准确的时序预测模型——TCN(Temporal Convolutional Network)!📊TCN网络具有因果关系,不会泄露未来信息,并且可以将任何序列映射到相同长度的输出序列。这使得它非常适合用于时间序列预测和指标分析。🔍下面是使用TCN进行时间序列预测的简化步骤: ...
本文是作者的原创第298篇,聚焦于Python时序预测领域,通过结合TCN(时间序列卷积网络)和LSTM(长短期记忆网络)模型,解决单站点多变量时间序列预测问题,以股票价格预测为例进行深入探讨。实现过程分为几个步骤:首先,从数据集中读取数据,包括5203条记录,通过8:2的比例划分为训练集(4162条)和测试集(...
Multihead-Attention-TCN-LSTM(多头注意力-TCN-LSTM)是一种结合了多个注意力机制、时序卷积网络(TCN)和长短期记忆网络(LSTM)的模型,用于时间序列预测。 输入层:将时间序列数据输入模型。时间序列可以是单变量(仅有一个特征)或多变量(多个特征)。 多头注意力(Multihead Attention):在这一层,模型会对输入数据进行多...