一方面,LSTM能够自动从大量序列数据中提取复杂的时空特征,减少了人工特征工程的复杂性;另一方面,SVM凭借其优秀的分类能力,能够对LSTM提取的特征进行精确分类,提高故障诊断的准确率。通过两者的结合,可以充分发挥各自的优势,实现更高效、准确的故障诊断。LSTM - SVM组合模型包含众多参数,如LSTM层的单元数量、学习率、正则...
1.Matlab实现Transformer-LSTM-SVM组合模型多特征分类预测/故障诊断,运行环境Matlab2023b及以上; 2.excel数据,方便替换,输入多个特征,分四类,可在下载区获取数据和程序内容。 3.图很多,包括分类效果图,混…
SVM模型能够有效地处理高维特征,并对数据进行非线性分类。二、模型训练与评估 数据准备: 首先需要收集大量的设备运行数据,包括传感器数据、环境数据、操作数据等。数据需要进行预处理,如清洗、归一化等,以提高模型的训练效率和效果。模型训练: 利用预处理后的数据训练Transformer-LSTM-SVM 组合模型。训练过程中需要...
【LSTM-SVM多变量回归预测】基于长短期记忆神经网络-支持向量机多变量回归预测。(可做分类/回归/时序预测,具体私聊),可直接运行。matlab代码,2020b及其以上。1.运行环境要求MATLAB版本为2020b,多特征输入单输出模型。程序内注释详细,直接替换数据就可以用。2.评价指标
1.LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测(完整源码和数据); 2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行; 3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标; 4.运行环境Matlab2023b及以上; ...
plt.ylabel('accuracy') plt.xlabel('folds') plt.xticks([1,2,3,4],['CNN-1D', 'CNN-2D' , 'LSTM', 'SVM']) plt.ylim([70,100]) plt.show() 麻雀虽小五脏俱全,这个例子虽然简单,但包括了数据前处理,特征提取,机器学习,深度学习,结果分析的一系列流程...
1.LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测(完整源码和数据); 2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行; 3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标; 4.运行环境Matlab2023b及以上; ...
支持向量机SVM是方法统称,如果应用于分类Classification,也叫支持向量分类SVC;如果应用于回归Regression,也叫支持向量回归SVR。 原理 硬间隔 首先考虑如何评估分类模型的好坏? 在上图中,红点和蓝叉分别表示两类线性可分的数据(取自鸢尾花数据集)。有黑色、橙色和绿色三个线性模型,都可以将数据分为两类。
金融界2024年12月26日消息,国家知识产权局信息显示,四川万物纵横科技股份有限公司申请一项名为“一种基于LSTM-SVM的物联网负载均衡任务调度方法及装置”的专利,公开号CN 119179564 A,申请日期为2024年11月。专利摘要显示,本发明公开了一种基于LSTM‑SVM的物联网负载均衡任务调度方法及装置,包括:接收任务请求;...
Aiming at the problem that feature extraction relies too much on human experience in the fault diagnosis of wind turbine gearboxes and the accuracy is not high, a method based on the combination of long short-term memory (LSTM) and support vector machine (SVM) was proposed...