长短期记忆网络(LSTM) 解决问题 短时记忆:RNN难以捕捉和利用序列中的长期依赖关系,从而限制了其在处理复杂任务时的性能。 梯度消失/梯度爆炸:在RNN的反向传播过程中,梯度会随着时间步的推移而逐渐消失(变得非常小)或爆炸(变得非常大)。 工作原理 LSTM的细胞结构和运算 输入门:决定哪些新信息应该被添加到记忆单元中 ...
一、什么是RNN和LSTM 二、理解时间序列问题 三、RNN和LSTM的结构 3.1 RNN结构 3.2 LSTM结构 3.3 LSTM的核心思想(细胞状态) 3.4 逐步分解LSTM-隐藏状态 四、 LSTM的变体 CNN和RNN作为深度学习届的卧龙凤雏,今天聊聊凤雏RN以及RNN的典型代表LSTM。 ps:在大模型已经相当普及的时代,现在聊这个,颇有49年入国军的感觉...
• LSTM 是一种特殊的循环神经网络(RNN),旨在解决传统 RNN 在处理长序列数据时面临的长期依赖问题。它通过引入细胞状态(cell state)和门控机制(gating mechanism)来有效地保存和更新长期信息。 • 细胞状态可以理解为一种信息的传输通道,贯穿整个时间序列,能够保存长期的信息。门控机制包括遗忘门(forget gate)、...
LSTM 可以被简单理解为是一种神经元更加复杂的 RNN,处理时间序列中当间隔和延迟较长时,LSTM 通常比 RNN 效果好。 相较于构造简单的 RNN 神经元,LSTM 的神经元要复杂得多,每个神经元接受的输入除了当前时刻样本输入,上一个时刻的输出,还有一个元胞状态(Cell State),LSTM 神经元结构请参见下图: LSTM 神经元中...
LSTM模型结构 本文介绍RNN模型和LSTM模型。 RNN 为什么会出现RNN 在传统的深度神经网络模型中,我们的输入信息是没有顺序的,比如,NLP领域中,我们输入单词经常使用embedding,将词汇映射为词向量,然后输入到神经网络。但是这种输入方式会有一些问题,比如,"我爱 你"和"你爱我"在传统的神经网络中不能很好的识别。在这种...
RNN是递归神经网络,它提供了一种解决深度学习的另一个思路,那就是每一步的输出不仅仅跟当前这一步的输入有关,而且还跟前面和后面的输入输出有关,尤其是在一些NLP的应用中,经常会用到,例如在NLP中,每一个输出的Word,都跟整个句子的内容都有关系,而不仅仅跟某一个词有关。LSTM是RNN的一种升级版本,它的核心思...
LSTM算法是一种重要的目前使用最多的时间序列算法,是一种特殊的RNN(Recurrent Neural Network,循环神经网络),能够学习长期的依赖关系。主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。 RNN与LSTM的关系 LSTM可以看作是RNN网络的一种特殊...
记录一下对RNN,LSTM,GRU基本原理(正向过程以及简单的反向过程)的个人理解 RNN Recurrent Neural Networks,循环神经网络 (注意区别于recursive neural network,递归神经网络) 为了解决DNN存在着无法对时间序列上的变化进行建模的问题(如自然语言处理、语音识别、手写体识别),出现的另一种神经网络结构——循环神经网络R.....
长短期记忆 (LSTM) 网络是一种特殊的循环神经网络 (RNN),能够学习长期依赖关系。在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。单元中的信息同时包含在单元状态 Ct 和隐藏状态 ht 中,并由称为...
时序模型RNN在时间维度上,共用模型结构,共享模型参数,通过自身循环,试图捕捉输入的上下文特征。整体来看,时序模型,运算速度不能彻底并行,但却有很强的表达能力,可以近似任何函数。 - 飞桨AI Studio