1. 自注意力机制:Transformer 模型引入了自注意力机制,使得模型能够在一个序列中同时关注不同位置的信息,从而提高了模型的表示能力和学习效率。这种机制使模型能够更好地捕获序列中的长期依赖关系和模式。 2. 并行计算:不同于循环神经网络(RNN)和长短期记忆网络(LSTM)需要按顺序处理序列数据。由于自注意力机制的特性...
首先需要明确的是 MoE 肯定不是非常新的架构,因为早在 2017 年,谷歌就已经引入了 MoE,当时是稀疏门控专家混合层,全称为 Sparsely-Gated Mixture-of-Experts Layer,这直接带来了比之前最先进 LSTM 模型少 10 倍计算量的优化。2021 年,谷歌的 Switch Transformers 将 MoE 结构融入 Transformer,与密集的 T5-Base ...