应用LSTM Encoder-Decoder提出了机械设备剩余使用寿命预测方法;对获取的传感器数据进行预处理,利用LSTM Encoder对数据序列进行编码,得到设备状态信息的中间表示,其中蕴含了设备状态的特征信息,利用LSTM Decoder对中间表示信息进行解码,利用解码后的信息预测剩余使用寿命;研究了LSTM Encoder-Decoder方法在公开的C-
2014年Sutskever等人提出seq2seq模型(Encoder-Decoder框架)首次实现了End-to-End的机器翻译。2015年,Bahdandu等人发明了注意力机制缓解了长句子性能急剧下降的问题,并将其简单的应用于多种语言的翻译任务中。2015年,Dong等人通过增加一系列的decoder和attention mechanism以实现multilingual machine translation。同样Luong等人...
该模型主要分为两部分:encoder和decoder,encoder由双向LSTM构成,decoder由单向LSTM构成。在进行翻译任务时,encoder在源语言句子上对信息进行提取,然后将信息传递给decoder进行句子生成(所翻译出来的目标语言句子)。为了加强decoder对源语言句子信息的分析能力,其在生成单词的每一时间步都会与encoder中所有时间步的隐藏状态向量...
(1)Encoder是由多个相同的层堆叠在一起的:$[input\rightarrow embedding\rightarrow self-attention \rightarrow Add Norm \rightarrow FFN \rightarrow Add Norm]$: (2)Encoder的self-attention是既考虑前面的词也考虑后面的词的,而Decoder的self-attention只考虑前面的词,因此mask矩阵是全1。因此encoder的self-at...
seq2seq由两部分组成:Encoder和Decoder。seq2seq的输入是一个序列,输出也是一个序列,经常用于时间序列预测。 我们根据前24个时刻的负荷以及该时刻的环境变量来预测接下来12个时刻的负荷(步长pred_step_size可调)。数据处理代码和前面的直接多输出预测一致。 模型搭建分为三个步骤:编码器、解码器以及seq2seq。 首先...
print( 'Loss: %f, Accuracy: %f' % (loss, acc*100)) 表 9.27 评价拟合 Encoder-Decoder LSTM 拟合的例子 运行该示例同时打印模型的 log 损失和准确性。由于神经网络的 随机性,您的特定值可能有所不同,但是模型的精度应该是在 90%以 内的。 1. Loss: 0.128379, Accuracy: 100.000000 表 9.28 评估拟合...
摘要:针对弱约束非合作目标的轨迹特性和运动特性,提出一种基于LSTM的Encoder-Decoder多步轨迹预测技术(EDMTP)。引入一阶差分处理,降低了轨迹数据的时间依赖性,得到了无趋势的轨迹。构造输入输出的轨迹数据对,将预测问题转化为有监督学习问题,研究多步预测过程中模型性能的变化,實现端到端的轨迹预测。仿真结果表明,该方...
编码器(Encoder):一个LSTM网络,负责接收源语言句子并将其编码成一个固定长度的上下文向量。 解码器(Decoder):另一个LSTM网络,根据上下文向量生成目标语言的翻译句子。 流程: 源语言输入:将源语言句子分词并转换为词向量序列。 编码:使用编码器LSTM处理源语言词向量序列,输出上下文向量。
Encoder-Decoder LSTM的结构以及怎么样在Keras中实现它; 加法序列到序列的预测问题; 怎么样开发一个Encoder-Decoder LSTM模型用来解决加法seq2seq预测问题。 9.1 课程概览 本课程被分为7个部分,它们是: Encoder-Decoder LSTM; 加法预测问题; 定义并编译模型; ...
1.主要工作是将机械设备的传感器数据,LSTM-encoder-decoder模型输入正常数据时间序列训练模型,重构时间序列,然后使用异常数据进行测试,产生较高的重构错误,表明时间序列数据为异常的。 ps:在encoder-decoder模型中有score机制,较高的异常分数是更可能为异常的。