下面详细看一下代码是如何实现LSTM-CRF模型的。代码中已经作出了非常详细的注释。 一些辅助函数 defargmax(vec):# return the argmax as a python int_,idx=torch.max(vec,1)returnidx.item()# 把seq转化为tensor的形式defprepare_sequence(seq,to_ix):# seq是分词后语料,to_ix是语料库每个词对应的编号# ...
这个组合模型(LSTM + CRF)可以端到端训练,在给定输入P(y|x)的情况下,最大化标签序列的概率,这与最小化P(y|x)的负对数似然是一样的: X是输入,y是标签 根据LSTM模型,E(y_i|x)为标签yi在i位置的发射分数,T(y_(i-1), y_i)是CRF的学习转换分数,Z(x)是配分函数,它是一个标准化因子,确保所有可...
这个组合模型(LSTM + CRF)可以端到端训练,在给定输入P(y|x)的情况下,最大化标签序列的概率,这与最小化P(y|x)的负对数似然是一样的: X是输入,y是标签 根据LSTM模型,E(y_i|x)为标签yi在i位置的发射分数,T(y_(i-1), y_i)是CRF的学习转换分数,Z(x)是配分函数,它是一个标准化因子,确保所有可...
我们的标注规则是:如果使用BIO标注规则,一个实体的开始一定是B开头,I结尾,如果不加CRF,就会出现,I-Organization 和I-Person 同时出现 。 如果用BIOES 还会出现2个不同实体的B-Organization 和B-Person同时出现,这样的情况都是不允许的,所以用CRF生成转移概率矩阵来约束这样的情况发生。 转移分数 转移分数,来自 CRF...
今天讲讲LSTM和CRF模型,LSTM(长短期记忆)是一种特殊的循环神经网络(RNN)模型,用于处理序列数据、时间序列数据和文本数据等。LSTM通过引入门控机制,解决了传统RNN模型在处理长期依赖关系时的困难。 LSTM模型的原理: 1. 输入门:控制输入向量进入细胞状态的程度。通过输入数据和上一个隐藏状态,计算输入门的开关值,并将...
LSTM-CRF模型详解和Pytorch代码实现 在快速发展的自然语言处理领域,Transformers 已经成为主导模型,在广泛的序列建模任务中表现出卓越的性能,包括词性标记、命名实体识别和分块。在Transformers之前,条件随机场(CRFs)是序列建模的首选工具,特别是线性链CRFs,它将序列建模为有向图,而CRFs更普遍地可以用于任意图。
这个组合模型(LSTM + CRF)可以端到端训练,在给定输入P(y|x)的情况下,最大化标签序列的概率,这与最小化P(y|x)的负对数似然是一样的: X是输入,y是标签 根据LSTM模型,E(y_i|x)为标签yi在i位置的发射分数,T(y_(i-1), y_i)是CRF的学习转换分数,Z(x)是配分函数,它是一个标准化因子,确保所有可...
1.LSTM+CRF概述 对于命名实体识别来讲,目前比较流行的方法是基于神经网络,例如,论文[1]提出了基于BiLSTM-CRF的命名实体识别模型,该模型采用word embedding和character embedding(在英文中,word embedding对应于单词嵌入式表达,character embedding对应于字母嵌入式表达;在中文中,word embedding对应于词嵌入式表达,character...
自然语言处理之LSTM+CRF序列标注 前言 序列标注是对输入序列中的每个标记进行标注标签的过程,常用于信息抽取任务,如分词、词性标注和命名实体识别。其中,命名实体识别是其中的一种任务。 条件随机场 序列标注需要考虑相邻Token之间的关联关系,而条件随机场是一种适合解决这种问题的概率图模型。文章详细介绍了条件随机场的...
在做这个任务的时候是17年的9月份,当时是在一家金融公司实习做基于大量金融数据(年报,研报)的中文实体识别任务,用的模型就是LSTM-CRF模型,这是一个比较简单经典的模型,实际上在NLP中命名实体识别(Name Entity Recognition,NER)是一个比较容易入门的研究课题,可以说做烂了,在这篇博客中,我打算做三个模型的介绍,LS...