以 GPT-3 175B 为例,部署独立的微调模型实例,每个实例含有 175B 个参数,成本非常高昂。我们提出了低秩自适应(Low-Rank Adaptation),简称 LoRA,它将预训练模型权重冻结,并将可训练的秩分解矩阵注入到 Transformer 架构的每一层中,大大减少了下游任务的可训练参数数量。与使用 Adam 进行微调的 GPT-3 175B 相比,...
2022年在AIGC时代到来之后,LoRA(Low-Rank Adaptation)无疑成为了AI绘画领域中与Stable Diffusion(简称SD)系列配合使用最多的模型,SD模型+LoRA模型的组合,不仅创造了很多脑洞大开的AI绘画风格、人物以及概念,而且大幅降低了AI绘画的成本,提高了AI绘画的多样性和灵活性,让各行各业的人都真真切切地感受到了AI绘画的...
Stable Diffusion 是一个文本到图像的潜在扩散模型,而 LoRA (Low-Rank Adaptation) 是一种参数高效的微调技术,用于减少大型模型的训练成本。要使用 LoRA 来训练 Stable Diffusion,你需要遵循以下步骤:准备数据:收集与你的训练目标相关的文本描述和对应的图像。确保数据集的质量和多样性,以便模型能够学习到丰富的表...
LoRA方法: 提出了一种名为LoRA(Low-Rank Adaptation)的方法,该方法冻结预训练模型的权重,并在Transformer架构的每层注入可训练的低秩分解矩阵。 LoRA大幅减少了下游任务的可训练参数数量,例如,与GPT-3 175B的Adam微调相比,LoRA可以将可训练参数减少10,000倍,GPU内存需求减少3倍。 实验结果: LoRA在RoBERTa、DeBERTa、...
LoRA(Low-Rank Adaptation of Large Language Models)-- 一种大模型prompt-tuning调优方法 一、Pre-train + Fine-tuning范式 0x1:为什么要微调 对于数据集本身很小(几千张图片/几千段文本)的情况,从头开始训练具有几千万参数的大型神经网络是不现实的,因为越大的模型对数据量的要求越大,过拟合无法避免。这时候...
LORA: LOW-RANK ADAPTATION OF LARGE LAN GUAGE MODELS 论文地址:https://arxiv.org/pdf/2106.09685.pdf 代码地址:https://github.com/microsoft/LoRA 摘要 自然语言处理的一个重要范式包括在一般领域数据上进行大规模的预训练 ,并适应特定的任务或领域。随着我们对更大的模型进行预训练,重新训练所有模型参数的完全...
unlike adapters, no additional inference latency. We also provide an empirical investigation into rank-deficiency in language model adaptation, which sheds light on the efficacy of LoRA. We release a package that facilitates the integration of LoRA with PyTorch models and provide our implementations ...
DoRA: Weight-Decomposed Low-Rank Adaptation [ICML2024 (Oral)] The Official PyTorch implementation ofDoRA: Weight-Decomposed Low-Rank Adaptation[ICML2024 (Oral, acceptance rate:1.5%)]. Shih-Yang Liu*,Chien-Yi Wang,Hongxu Yin,Pavlo Molchanov,Yu-Chiang Frank Wang,Kwang-Ting Cheng,Min-Hung Chen ...
unlike adapters, no additional inference latency. We also provide an empirical investigation into rank-deficiency in language model adaptation, which sheds light on the efficacy of LoRA. We release a package that facilitates the integration of LoRA with PyTorch models and provide our implementations...
Code for loralib, an implementation of "LoRA: Low-Rank Adaptation of Large Language Models" - microsoft/LoRA