2022年在AIGC时代到来之后,LoRA(Low-Rank Adaptation)无疑成为了AI绘画领域中与Stable Diffusion(简称SD)系列配合使用最多的模型,SD模型+LoRA模型的组合,不仅创造了很多脑洞大开的AI绘画风格、人物以及概念,而且大幅降低了AI绘画的成本,提高了AI绘画的多样性和灵活性,让各行各业的人都真真切切地感受到了AI绘画的...
其次LoRA并不会更改原始模型,而是只训练一个新增的额外参数,而且这个参数仅用来适配当前任务。但是这也意味着LoRA在训练多任务时需要多个不同的\Delta W,多任务的学习对于LoRA来说比较困难,除非把它们当成同一个任务。 参考 ^Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." *a...
LoRA(Low-Rank Adaptation) 通过引⼊低秩矩阵分解,在减少计算资源和存储需求的同时,保持了预训练模型的初 始性能,稳定了微调过程,并降低了存储和部署成本。它特别适⽤于⼤规模模型的微调,在资源有限的环境中具有显 著的优势。 存储与计算效率:通过低秩适应(LoRA),可以显著减少所需存储的参数数量,并减少计算需求。
Stable Diffusion 是一个文本到图像的潜在扩散模型,而 LoRA (Low-Rank Adaptation) 是一种参数高效的微调技术,用于减少大型模型的训练成本。要使用 LoRA 来训练 Stable Diffusion,你需要遵循以下步骤:准备数据:收集与你的训练目标相关的文本描述和对应的图像。确保数据集的质量和多样性,以便模型能够学习到丰富的表...
LoRA(Low-Rank Adaptation of Large Language Models)-- 一种大模型prompt-tuning调优方法 一、Pre-train + Fine-tuning范式 0x1:为什么要微调 对于数据集本身很小(几千张图片/几千段文本)的情况,从头开始训练具有几千万参数的大型神经网络是不现实的,因为越大的模型对数据量的要求越大,过拟合无法避免。这时候...
另外对于适配器学习来说,它们一般会向网络层中插入一些可学习的模块,同时这也带来了推理时间的增加。我们这里介绍一个近期训练LLM普遍使用的PEFT算法:LoRA(Low Rank Adaptation)[1]名思义,LoRA的核心思想是基于低秩的适配器进行优化。 1. 背景知识 1.1 什么是秩?
LoRA(Low-Rank Adaptation)是一种用于大型语言模型(LLMs)的微调技术。它的核心思想是在不显著增加参数数量的情况下,通过在模型中引入低秩(low-rank)矩阵来适应特定的任务或数据集。这种方法允许模型在保持原有预训练知识的同时,快速适应新的任务或领域。 LoRA的主要
LoRA方法: 提出了一种名为LoRA(Low-Rank Adaptation)的方法,该方法冻结预训练模型的权重,并在Transformer架构的每层注入可训练的低秩分解矩阵。 LoRA大幅减少了下游任务的可训练参数数量,例如,与GPT-3 175B的Adam微调相比,LoRA可以将可训练参数减少10,000倍,GPU内存需求减少3倍。
训练大型语言模型为运算基础设施带来无法忽视的内存挑战,主要是因权重大小和优化器(optimizer)状态不断增加。常见内存减少方法,例如微软研究团队所提出LoRA(Low-Rank Adaptation),概念是冻结原本预训练模型权重,减少训练参数量和优化器状态,也能达到很好的微调(fine-tuning)效果。
论文《 LoRA: Low-Rank Adaptation of Large Language Models》提出将权重变化 ΔW 分解为秩较低的表示。(LoRA 不会直接分解矩阵,而是通过反向传播来学习分解的矩阵)。 在仔细研究 LoRA 之前,我们先简要解释一下规则微调期间的训练程序。首先是权重变化 ΔW。假设 W 表示给定神经网络层中的权重矩阵。然后,使用常规...