神经网络算法——损失函数(Loss Function) 前言 本文将从损失函数的本质、损失函数的原理、损失函数的算法三个方面,详细介绍损失函数Loss Function。 损失函数 1、损失函数的本质 (1)机器学习“三板斧” 选择模型家族,定义损失函数量化预测误差,通过优化算法找到最小损失的最优模型参数。 机器学习VS 人类学习 定义一个...
(Loss Function)在机器学习和深度学习中扮演着至关重要的角色,它是衡量模型预测值与实际值之间差异程度的函数。通过最小化损失函数,我们可以优化模型的参数,使其预测结果更加准确。 一、损失函数的定义 损失函数(Loss Function)作为神经网络中的一个评估指标,用于衡量神经网络输出与真实标签之间的差异或误差。损失函数通...
将所有损失函数(loss function)的值取平均值的函数称为代价函数(cost function),更简单的理解就是损...
【深度学习】一文读懂机器学习常用损失函数(Loss Function) 损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括...
损失函数的选择是深度学习中的一个关键决策,它影响优化过程、模型行为、稳健性和整体性能。 1. 均方误差(MSE)损失 - 也称为 L2 损失,特别用于回归任务。 它测量预测值与实际值(真实值)之间平方差的平均值。 ▫️ 均方误差的优缺点 均方误差(MSE)损失的优点 ...
损失函数(Loss Function),。对于这一部分知识不清楚的同学可以参考上一篇文章《线性回归、梯度下降》。本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法。 最小二乘法构建损失函数 最小二乘法也一种优化方法,用于求得目标函数
1. mean squared loss function 其中sigma函数就是我们上一篇讲的激活函数,所以当然无论是那个激活函数都可以。在BP中,我们是根据损失的差,来反向传回去,更新w,b。那么这个损失的差,怎么算?对,就是对loss function分别对w,b求导,算他们的梯度。这里在插一张,之前用过得图。这里要特别说一下,这个导数是怎么算...
损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子: ...
损失函数定义在单个样本上,算的是一个样本的误差。 代价函数定义在整个训练集上,是所有样本误差的平均,也就是损失函数的平均。 目标函数定义为最终需要优化的函数,等于经验风险 + 结构风险(也就是Cost Function + 正则化项)。 损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,对于目标函数...