数据比较多,99%的数据是对的,但有1%的数据不正常,或者损坏,在训练过程中这些数据往往会造成nan或者inf,这时候需要仔细挑选自己的数据,关于如何挑选数据(https://cloud.tencent.com/developer/article/2346565)。 训练过程中跳出了错误的数据,这是需要在IDE或者通过其他途径对运行中的程序进行分析。 这时我们要注意的...
现象:观测训练产生的log时一开始并不能看到异常,loss也在逐步的降低,但突然之间NaN就出现了。 措施:看看你是否能重现这个错误,在loss layer中加入一些输出以进行调试。 3. 不当的输入 原因:输入中就含有NaN。 现象:每当学习的过程中碰到这个错误的输入,就会变成NaN。观察log的时候也许不能察觉任何异常,loss逐步的...
措施:看看你是否能重现这个错误,在loss layer中加入一些输出以进行调试。 3. 不当的输入 原因:输入中就含有NaN。 现象:每当学习的过程中碰到这个错误的输入,就会变成NaN。观察log的时候也许不能察觉任何异常,loss逐步的降低,但突然间就变成NaN了。 措施:重整你的数据集,确保训练集和验证集里面没有损坏的图片。调试...
我们需要定位到loss具体是在哪一行代码存在了nan的问题。比如,有可能在前几层的输入是正确的,但是到了某一层的时候输出就会变成nan或者inf(其中-inf代表负无穷,而nan代表不存在的数),这个时候就需要通过调试来定位。Pytorch中自带了检测计算为nan的方法,我们可以使用torch.autograd.tect_anomaly类来定位loss为nan的位置。
当训练网络时遇到loss值为NaN的问题,可以采取以下解决方案:1. 调整学习率 降低学习率:过高的学习率可能导致模型在训练早期就出现NaN。尝试将学习率降低110倍,观察loss值是否恢复正常。2. 处理梯度爆炸 梯度截断:对于循环神经网络等容易出现梯度爆炸的模型,可以使用梯度截断技术来限制梯度的最大值,从而...
浓缩为下面两种情况: 1. 梯度爆炸。解决方法:调学习率、梯度剪裁、归一化 2. 计算loss的时候有log0,可能是初始化的问题,也可能是数据的问题 最近使用 apex的amp 进行混合精度计算的时候出现了loss 为NAN 的情…
在深度学习中,模型训练时的loss值通常是评估模型性能的重要指标。然而,有时候在训练过程中,loss值可能会出现nan,这可能会导致训练中断或者模型性能下降。本文将探讨导致loss出现nan的原因,以及相应的解决方法。 一、原因分析 梯度爆炸 梯度爆炸是导致loss出现nan的一个常见原因。当梯度在反向传播过程中不断放大,会使得...
下面我将详细阐述导致损失函数为nan的原因。 1.数据异常或缺失 数据异常或缺失是导致损失函数为nan的最常见原因之一、当训练数据中存在无效或异常值时,计算损失函数就会出现问题。例如,数据中存在NaN或inf(无穷大)等数值,这些数值无法进行有效的计算,会导致损失函数出现NaN结果。 解决策略: -数据预处理:在训练之前,...
NaN的意思是not a number,不是一个数字。 1、梯度爆炸 一般loss的相关量是w——> w的相关量(更新方式)是梯度——>和梯度有关 原因:在学习过程中,梯度变得非常大,使得学习的过程偏离了正常的轨迹。 症状:观察输出日志(runtime log)中每次迭代的loss值,你会发现loss随着迭代有明显的增长,最后因为loss值太大以...
NaN的意思是not a number,不是一个数字。 1、梯度爆炸 一般loss的相关量是w——> w的相关量(更新方式)是梯度——>和梯度有关 原因:在学习过程中,梯度变得非常大,使得学习的过程偏离了正常的轨迹。 症状:观察输出日志(runtime log)中每次迭代的loss值,你会发现loss随着迭代有明显的增长,最后因为loss值太大以...