P-tuning v2微调方法是在P-tuning v1的基础上引入了prefix-tuning的思想 常见误区:1.P-tuning v1微调方法能微调实体识别的任务、2.P-tuning v1微调方法在效果上可以媲美全参数微调的方式 3.P-tuning v2微调方法在自然语言理解任务上表现不佳 P-tuning v2微调方法原理方面: 1.P-tuning v2微调方法在transformer...
P-tuning v2 微调方法解决了 P-tuning v1 方法的缺陷,是一种参数高效的大语言模型微调方法。 P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示...
P-tuning v2 微调方法解决了 P-tuning v1 方法的缺陷,是一种参数高效的大语言模型微调方法。 P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示...
Prompt-Tuning(P-Tuning)是一种基于提示的微调技术。它通过将输入序列中的某些部分替换为可学习的提示来调整模型参数,从而实现对大模型的微调。与传统的微调方法相比,P-Tuning可以更快速地收敛,并且只需要较少的计算资源和时间。实验结果表明,P-Tuning在各种NLP任务上取得了较好的性能表现。五、P-Tuning v2P-Tuning ...
Prompt Tuning是一种基于prompt的方法,其基本思想是在预训练模型的输入序列前面添加一些可学习的参数(即prompt),然后在训练过程中对它们进行更新。这些prompt可以看作是连接预训练模型和特定任务的桥梁。通过调整prompt的参数,可以使预训练模型更好地适应新任务。四、P-Tuning v2P-Tuning v2是Prompt Tuning的改进版,它...
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法 1.SFT 监督微调 1.1 SFT 监督微调基本概念 SFT(Supervised Fine-Tuning)监督微调是指在源数据集上预训练一个神经网络模型,即源模型。然后创建一个新的神经网络模型,即目标模型。目标模型复制了源模型上除了输出...
P-tuning v2 的步骤 1. 预训练 P-tuning v2的第一步是在大规模未标记的文本数据上对模型进行预训练,这与其他微调方法相似。 2. 适应性层 P-tuning v2引入了适应性层,这是一种特殊的神经网络层,用于根据不同语言和任务的需要自适应模型的表示。适应性层允许模型根据任务和语言的差异进行调整。
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法 1.SFT 监督微调 1.1 SFT 监督微调基本概念 SFT(Supervised Fine-Tuning)监督微调是指在源数据集上预训练一个神经网络模型,即源模型。然后创建一个新的神经网络模型,即目标模型。目标模型复制了源模型上除了输出...
一、Prompt Tuning 二、P-Tuning 三、P-Tuning v2 四、Prefix Tuning 五、Adapter 5.1 Adapter Fusion 5.2 AdapterDrop 六、LoRA 预训练大模型虽然具有强大的泛化能力和广泛的知识,但它们通常是针对大量通用数据集进行训练的,这使得它们在处理特定任务时可能无法达到最佳效果,比如ChatGPT、混元、文心一言在回答一些常识...
简介:本文将深入探讨人工智能领域中的大语言模型微调技术,包括SFT监督微调、LoRA微调方法、P-tuning v2微调方法及Freeze监督微调方法,分析它们各自的原理和特点,并通过案例说明其应用场景。 在人工智能(AI)领域中,大语言模型(LLM)已成为处理自然语言任务的关键技术。为了提升模型的性能和适应性,研究者们提出了多种微调...