P-Tuning: GPT Understands, Too Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning Part2 结果 接下来是一些的基础设置: 数据:ChnSentiCorp_htl_all 模型:hfl/chinese-roberta-wwm-ext 显存:Tesla T4 15G batch_size:64 epoch:3 max_length:86 lr:3e-4 以下是结果,各位...
● 以前的方法(论文发表于2021年)都或多或少有其它性能问题,如adapter增加了模型层数,引入了额外的推理延迟;prefix-tuning比较难训练,效果不如直接finetune。基于上述背景,论文作者得益于前人的一些关于内在维度(intrinsic dimension)的发现:模型是过参数化的,它们有更小的内在维度,模型主要依赖于这个低的内在维度(low...
Prefix Tuning是一种针对Transformer模型进行微调的方法,它通过在模型输入中添加特定前缀,使模型在训练过程中关注这些前缀的信息。这种方法的优点在于简单易行,适用于各种不同的任务和数据集。然而,Prefix Tuning的缺点是前缀的设计需要手动调整,且前缀的数量和长度会对微调效果产生影响。应用场景:适用于各种需要添加特定前...
Prefix-tuning是一种基于预训练语言模型的微调方法,通过在预训练模型的输出层之前添加可学习的前缀模块来调整模型参数。这些前缀模块可以看作是特定任务的指示符,用于指导模型更好地处理相关任务。Prefix-tuning的主要思想是通过更新前缀模块的参数来改变模型的输出分布,使其更符合特定任务的语义信息。这种方法可以有效地提...
P-tuning和Prompt-tuning是两种基于提示的微调方法。P-tuning方法通过向模型输入提示信息来指导模型进行预测,而Prompt-tuning方法则通过在输入数据中嵌入提示信息来调整模型的行为。这两种方法都利用了模型对提示信息的敏感性,通过修改提示信息来改变模型的行为,从而实现微调。
大模型微调方法总结:LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning,随着深度学习技术的不断发展,大型预训练模型已成为许多任务的重要工具。然而,微调(finetuning)这些大模型以适应特定任务是一个复杂且计算密集型的过程。本文将重点介绍五种不同的微调方法
Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning Part2结果 接下来是一些的基础设置: 数据:ChnSentiCorp_htl_all 模型:hfl/chinese-roberta-wwm-ext 显存:Tesla T4 15G batch_size:64 epoch:3 max_length:86 lr:3e-4 以下是结果,各位自行分析吧: 全参数微调 prefix-tun...
它在性能上与微调相当,但仅需要调整0.1%-3%的参数。我们的方法P-Tuning v2是Deep Prompt Tuning(Li和Liang, 2021; Qin和Eisner, 2021)的一种实现,针对NLU进行了优化和适配。鉴于P-Tuning v2的普适性和简单性,我们相信它可以作为微调的替代方案,并为未来的研究提供一个强大的基线。
- Prefix Tuning为模型添加可训练的、任务特定的前缀,为不同任务保存不同的前缀,减少微调成本并节省存储空间。- Prompt Tuning在输入数据中添加可学习的嵌入向量作为提示,引导模型生成特定类型输出,节省微调资源。- P-Tuning使用一个可训练的LSTM模型动态生成虚拟标记嵌入,提供高灵活性和适应性。- P-...
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等] 由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要full-tuning所有模型参数,看着是不太实际,一来需要相当多的硬件设备(GPU),二来需要相当长的训练时间。因此,我...