def find_target_modules(model): # Initialize a Set to Store Unique Layers unique_layers = set() # Iterate Over All Named Modules in the Model for name, module in model.named_modules(): # Check if the Module Type Contains 'Linear4bit' if "Linear4bit" in str(type(module)): # Extrac...
ATK-LORA-01模块的RXD接 精英版上USART1的TXD。 ATK-LORA-01模块的VCC接 一个3.3V引脚。 ATK-LORA-01模块的GND接 一个GND引脚。 ATK-LORA-01模块的MD0接 一个3.3V引脚。(MD0置1) ATK-LORA-01模块的AUX悬空,啥都不接。 发送指令AT,检测是否连接正确。返回OK,表示连接正确,已经进入配置功能。 发送指令A...
代码语言:javascript 复制 def find_target_modules(model): # Initialize a Set to Store Unique Layers unique_layers = set() # Iterate Over All Named Modules in the Model for name, module in model.named_modules(): # Check if the Module Type Contains 'Linear4bit' if "Linear4bit" in str(...
51CTO博客已为您找到关于lora_target_modules应该怎么设置的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及lora_target_modules应该怎么设置问答内容。更多lora_target_modules应该怎么设置相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和
target_modules=["q_proj", "v_proj"] ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() #=> trainable params: 6,291,456 || all params: 470,279,168 || trainable%: 1.3378130327899194 LoraConfig中的r和lora_alpha等参数上文都已经讲过,主要关注到target_modules,原...
--lora_target_modules"attn_q""attn_k""attn_v"\ --use_inflight_batching \ --paged_kv_cache \ --max_lora_rank8\ --world_size1--tp_size1 接下来,生成 LoRA 张量,这些张量将随每个请求传入 Triton。 git-lfs clonehttps://huggingface.co/qychen/luotuo-lora-7b-0.1 ...
)# 步骤2:lora配置lora_config = LoraConfig(# lora配置r = model_args.lora_r,# r表示秩lora_alpha = model_args.lora_alpha,# alpha表示缩放因子# target_modules = ["query_key_value"], # 目标模块# target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj'], # 目标模块target_modul...
from peft import LoraConfig, TaskTypelora_config = LoraConfig( r=16, lora_alpha=16, target_modules=["query_key_value"] lora_dropout=0.1, bias="none", task_type=TaskType.CAUSAL_LM, )还可以针对transformer架构中的所有密集层:# From https://github.com/artidoro/qlora...
target_modules=['query', 'key', 'value', 'intermediate.dense', 'output.dense'], # be precise about dense because classifier has dense too modules_to_save=["LayerNorm", "classifier", "qa_outputs"], # Retrain the layer norm; classifier is the fine-tune head; qa_outputs is for SQuAD...
target_modules=["query_key_value"] lora_dropout=0.1, bias="none", task_type=TaskType.CAUSAL_LM, ) 还可以针对transformer架构中的所有密集层: # From https://github.com/artidoro/qlora/blob/main/qlora.py def find_all_linear_names(args, model): ...