LLMCat 亚马逊信息服务(北京)有限公司上海分公司 数据科学家7 人赞同了该文章 本文介绍使用PEFT( 参数高效微调, Parameter Efficient Fine-Tuning)的LoRA方法,来通过调整模型的一小部分参数来实现模型的fine-tuning。 使用的微调方法为 LoRA(低秩适应, Low Rank Adaptation)在微调过程中通过低秩分解来模拟...
1.2 P-Tuning 1.3 LST 1.4 LoRA 1.5 小结 2 LoRA代码解析 2.1 MergedLinear源码解析 2.2 对Llama 进行LoRA 微调 参考 0 前言 最近因为工作需要,在接触一些大模型微调训练相关的算子实现,因为以往接触inference相关比较多,而对于training相关的技术接触的相对较少,所以本文就以LoRA: Low-Rank Adaptation of Large Lan...
简介:随着大语言模型(LLM)的崛起,微调(Fine-tuning)成为提高模型性能的关键步骤。Lora是一个基于大语言模型的微调工具,它提供了一种高效且灵活的方式来优化模型以适应特定任务。本文将介绍Lora的工作原理、优势,以及如何在实践中应用这一工具来提高模型性能。 即刻调用文心一言能力 开通百度智能云千帆大模型平台服务自动...
lora微调需要什么级别的卡主要要看两个点:1.模型的参数 2.lora rank设置参数,但是一般都设置为32 64...
简介:LLM-05 大模型 15分钟 FineTuning 微调 ChatGLM3-6B(微调实战1) 官方案例 3090 24GB实战 需22GB显存 LoRA微调 P-TuningV2微调 续接上节 我们的流程走到了,环境准备完毕。 装完依赖之后,上节结果为: 介绍LoRA LoRA原理 LoRA的核心思想是在保持预训练模型的大部分权重参数不变的情况下,通过添加额外的网...
lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 第一个参数:数据集的路径 第二个参数:模型的路径 ...
针对LLM的主流微调方式有P-Tuning、Freeze、LoRa等等。由于LoRa的并行低秩矩阵几乎没有推理延迟被广泛应用于transformers模型微调,另一个原因是ROI过低,对LLM的FineTune所需要的计算资源不是普通开发者或中小型企业愿意承担的。而LoRa将训练参数减少到原模型的千万分之一的级别使得在普通计算资源下也可以实现FineTune。
lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 第一个参数:数据集的路径 第二个参数:模型的路径 ...
笔记修改自博主@AI探索与发现 参考视频:https://www.youtube.com/watch?v=LPmI-Ok5fUcllama3微调训练finetune中文写作模型,Lora小说训练,利用AI写小说llama3-novel中文网络小说写作模型 https://pan.quark.cn/s/dcd9799885c4llama3-novel中文绅士小说写作模型 https://pan.
在fintuning_demo目录下的config ds_zereo_2/ds_zereo_3.json:deepspeed配置文件。 lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 ...