Fine-tuning (微调),是指在新数据集上调整预训练模型的权重,从而提高模型在特定领域,或特定任务上的性能。下图演示了这一过程: LoRA是近年来对大模型最重要的贡献之一,它通过只修改模型一小部分的参数,重新定义了对大模型微调的方法。 LoRA 提出后,出现了许多 LoRA 的变体,每种变体都针对特定的挑战进行了改进与...
本文介绍使用PEFT( 参数高效微调, Parameter Efficient Fine-Tuning)的LoRA方法,来通过调整模型的一小部分参数来实现模型的fine-tuning。 使用的微调方法为 LoRA(低秩适应, Low Rank Adaptation)在微调过程中通过低秩分解来模拟参数的改变量,保持模型大部分参数的低秩结构,提高效率。大概做法: 做pretrain模型旁边增加一个...
方式一:Prompt-tuning 1、什么是Prompt-tuning? Prompt-tuning通过修改输入文本的提示(Prompt)来引导模型生成符合特定任务或情境的输出,而无需对模型的全量参数进行微调。 这种方法利用了预训练语言模型(PLM)在零样本或少样本学习中的强大能力,通过修改输入提示来激活模型内部的相关知识和能力。 核心原理:PLM(预训练模型...
在Lit-GPT中的微调脚本中,有几个是用于LoRA默认配置的。在执行微调之前,可以在finetuning/loa.py文件中编辑这些选项。例如,更改所使用的r值,或者将LoRA应用于transformer内的所有层等等。 4.1 使用LoRA的注意事项 当然,这只是使用LoRA 微调大模型的简单入门,但是可以作为一个良好的起点。从对LoRA的广泛实证分析中收集...
2、INTRINSIC DIMENSIONALITY EXPLAINS THE EFFECTIVENESS OF LANGUAGEMODEL FINE-TUNING,发表在ACL2021,为了方便接下来该论文称为【论文2】二、本征维度是什么?本征维度的概念在【论文1】中提出。训练一个神经网络往往包含如下几步:1、对于一个给定的数据集,先设计网络的结构和选择对应的loss2、对网络中的参数进行...
在fintuning_demo目录下的config ds_zereo_2/ds_zereo_3.json:deepspeed配置文件。 lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 ...
原文:https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms)作者 | Sebastian Raschka OneFlow编译 翻译|杨婷、宛子琳 LoRA(低秩自适应)是目前用于高效训练定制语言大模型(LLM)的最广泛和最有效的技术之一。对于那些对开源LLM感兴趣的人来说,这是一项值得熟悉的关键技术。上个月,我...
lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 第一个参数:数据集的路径 第二个参数:模型的路径 ...
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写。这个技术可以把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单的。例如,全参训练一个7b模型大约需要80G显存(相当于一张完整的A100显卡),但使用LISA训练后却可以使显存降低到30G左右,这使...
[4]: LoRA-FA: Zhang, L., Zhang, L., Shi, S., Chu, X., & Li, B. (2023). Lora-fa: Memory-efficient low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303. [5] LoRA-drop: Zhou, ...