本文介绍使用PEFT( 参数高效微调, Parameter Efficient Fine-Tuning)的LoRA方法,来通过调整模型的一小部分参数来实现模型的fine-tuning。 使用的微调方法为 LoRA(低秩适应, Low Rank Adaptation)在微调过程中通过低秩分解来模拟参数的改变量,保持模型大部分参数的低秩结构,提高效率。大概做法: 做pretrain模型旁边增加一个...
Fine-tuning (微调),是指在新数据集上调整预训练模型的权重,从而提高模型在特定领域,或特定任务上的性能。下图演示了这一过程: LoRA 是近年来对大模型最重要的贡献之一,它通过只修改模型一小部分的参数,重新定义了对大模型微调的方法。 LoRA 提出后,出现了许多 LoRA 的变体,每种变体都针对特定的挑战进行了改进与...
大语言模型(LLM)在过去几年中彻底改变了自然语言处理领域,展现了在理解和生成类人文本方面的卓越能力。然而,通用LLM的开箱即用性能并不总能满足特定的业务需求或领域要求。为了将LLM更好地应用于实际场景,开发出了多种LLM定制策略。本文将深入探讨RAG(Retrieval Augmented Generation)、Agent、微调(Fine-Tuning)等六种...
在fintuning_demo目录下的config ds_zereo_2/ds_zereo_3.json:deepspeed配置文件。 lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 第一个参数:...
lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 第一个参数:数据集的路径 第二个参数:模型的路径 ...
Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码 Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例 Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介 Llama模型家族之使用 Supervised Fine-Tu...
1.微调(Supervised Finetuning) 指令微调阶段使用了已标注数据。这个阶段训练的数据集数量不会像预训练阶段那么大,最多可以达到几千万条,最少可以达到几百条到几千条。指令微调可以将预训练的知识“涌现”出来,进行其他类型的任务,如问答类型的任务。一般指令微调阶段对于在具体行业上的应用是必要的,但指令微调阶段一...
但是,一般的基座大模型(Base Model),并不会包含特定的商业数据,因此对特定数据集上微调基座大模型以确保LLM输出结果的准确性的需求就油然而生。企业可以使用微调(Fine-Tuning)技术和通用训练数据根据其独特需求调整预训练语言模型。 微调LLM 的能力为希望利用人工智能力量的商业企业开辟了一个充满可能性的世界。
而且,通常不同的下游任务还需要LLM的全量参数,对于算法服务部署来说简直是个灾难(当然,一种折衷做法就是全量微调后把增量参数进行SVD分解保存,推理时再合并参数 )。 1.3 PEFT综述 为了寻求一个不更新LLM全部参数的廉价微调方案,之前一些预训练语言模型的高效微调(Parameter Efficient Fine-Tuning, PEFT)工作,要么插入一...
P-TuningV2 微调: 1张显卡,占用 18426MiB 显存。 LORA 微调: 1张显卡,占用 14082MiB 显存。 实机配置 目前我有三个方案: 方案1:MacBookProM1 16GB(平常用的机器,可以支撑起 LoRA…勉强跑 不推荐) 方案2:找算法组借的 2070 Super 8GB * 2 一共16GB显存(但是不能微调,后续说) ...