Lora is a powerful tool, but it is sometimes difficult to use and can affect areas that you do not want it to affect. This script allows you to set the weights block-by-block. Using this script, you may be able to get the image you want. 工作原理 如果深入剖析模型的组成,LoRA 可以细...
# Merge lora and train | 差异提取法 base_weights="" base_weights_multiplier="1.0" # Block weights | 分层训练 enable_block_weights=0 #开启分层训练 down_lr_weight="1,0.2,1,1,0.2,1,1,0.2,1,1,1,1" #12层,需要填写12个数字,0-1.也可以使用函数写法,支持sine, cosine, linear, reverse_...
if self.merge_weights and self.merged: # self.merged = Ture # Make sure that the weights are not merged # weight=weight-B * A * scale 需要剪掉merge的部分 if self.r > 0: self.weight.data -= (self.lora_B @ self.lora_A).T * self.scaling ...
一、在Google Colab上做LoRA微调 1、首先,需要有一个梯子,翻墙注册google账号。2、使用账号登录google ...
LoRAの階層適用を手助けするツールとチュートリアルです。. Contribute to Zuntan03/LoraBlockWeightPlotHelper development by creating an account on GitHub.
scaling = alpha / rweight += (lora_B @ lora_A) * scaling 根据上述代码公式,alpha值越大,LoRA权重的影响就越大。在之前的实验中,使用了r=8和alpha=16,导致了2倍的扩展。在LLM中应用LoRA时,将alpha值设置为r的两倍是一个常见的经验法则,但我好奇这是否仍然适用于更大的r值。换句话说,“alpha ...
# Merge lora and train | 差异提取法base_weights=""base_weights_multiplier="1.0"# Block weights | 分层训练enable_block_weights=0#开启分层训练down_lr_weight="1,0.2,1,1,0.2,1,1,0.2,1,1,1,1"#12层,需要填写12个数字,0-1.也可以使用函数写法,支持sine, cosine, linear, reverse_linear, ...
LoRA LoRA from Weightのlbw欄に、sd-webui-lora-block-weightに沿った文字列を記入するといい感じになります。プリセットはpreset.txtで追加できます。RとかUには未対応です。 注意点 メタデータのことはよく分からないので何も考慮してません。
此时self.megred_weights = True, self.merged = True,意味着当前状态中预训练和低秩适配器的权重是合在一起的,满足了if self.merge_weights and self.merged这个条件。所以我们就要执行相关操作啦,也就是self.weight.data -= self.zero_pad(T(delta_w * self.scaling)),将低秩适配器从预训练权重里剥离开...
weight += (lora_B_set1 @ lora_A_set1) * scaling_set1weight += (lora_B_set2 @ lora_A_set2) * scaling_set2weight += (lora_B_set3 @ lora_A_set3) * scaling_set3... 我还没有进行实验来评估这种方法的性能,但从技术上讲,通过Lit-GPT提供的merge_lora.py脚本已经可以实现这一点。