看上图右侧的红色箭头部分,P-Tuning v2的做法就是除了在embedding层拼接新的可训练参数,在每层的Self-Attention部分的 w_{k} 和w_{v} 处也拼接了新的参数。对应的代码如下: elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transp...
p tuning v2简单来说其实是soft prompt的一种改进,soft prompt是只作用在embedding层中,实际测试下来只作用在embedding层的话交互能力会变弱,而且冻结模型所有参数去学习插入token,改变量偏小使得效果有时候不太稳定,会差于微调。p tuning v2则不只是针对embedding层,而是将连续型token插入每一层,增大改变量和交互性...
P-Tuning是一种针对Transformer模型的参数优化方法。它通过优化模型参数来提高模型的性能和泛化能力。P-Tuning的优点在于能够有效地优化模型参数,从而提高模型的准确率和鲁棒性。然而,P-Tuning也存在一定的缺点,例如它需要较大的计算资源和较长的时间来进行参数优化。应用场景:适用于对模型性能要求较高的任务,如机器翻译...
P-tuning是一种基于预训练模型的微调方法,通过在预训练模型的最后一层添加可学习的参数来调整模型参数。这些可学习参数可以在训练过程中进行更新,以适应特定任务。P-tuning的主要思想是通过更新这些参数来改变模型的输出分布,从而更好地处理特定任务。这种方法可以有效地提高模型在各种任务上的性能,同时避免了过拟合问题。
P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示模型参数量,纵坐标表示微调效果):
人工智能大语言模型微调技术:SFT 监督微调、LoRA 微调方法、P-tuning v2 微调方法、Freeze 监督微调方法 1.SFT 监督微调 1.1 SFT 监督微调基本概念 SFT(Supervised Fine-Tuning)监督微调是指在源数据集上预训练一个神经网络模型,即源模型。然后创建一个新的神经网络模型,即目标模型。目标模型复制了源模型上除了输出...
P-tuning v2 微调方法仅精调 0.1% 参数量(固定 LM 参数),在各个参数规模语言模型上,均取得和 Fine-tuning 相比肩的性能,解决了 P-tuning v1 在参数量不够多的模型中微调效果很差的问题。如下图所示(横坐标表示模型参数量,纵坐标表示微调效果):
LoRA通过引入额外的线性层来减少对初始模型的过度依赖和过拟合问题;Adapter具有较低的计算成本和较好的性能,适用于小数据集;Prefix-tuning只微调预训练模型的前缀,减少了计算成本和过拟合的风险;P-tuning通过引入参数化转换矩阵来调整预训练模型的权重,减少了过度依赖;Prompt-tuning利用prompting技术修改预训练模型的输入,...
通俗理解大模型从预训练到微调实战!P-Tuning微调、Lora-QLora、RLHF基于人类反馈的强化学习共计2条视频,包括:大模型项目引入、1-2节 从预训练到微调等,UP主更多精彩视频,请关注UP账号。
P-Tuning: GPT Understands, Too Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning Part2结果 接下来是一些的基础设置: 数据:ChnSentiCorp_htl_all 模型:hfl/chinese-roberta-wwm-ext 显存:Tesla T4 15G batch_size:64 epoch:3 max_length:86 lr:3e-4 以下是结果,各位自...