论文提出了低秩(LOW-RANK)自适应(LoRA),它冻结了预训练的模型权重,并将可训练的秩分解矩阵注入Transformer架构的每一层,从而大大减少了下游任务的可训练参数数量。与用Adam微调的GPT-3175B相比,LoRA可以将可训练参数的数量减少10000倍,GPU内存需求减少3倍。LoRA在RoBERTa、DeBERTa、GPT-2和GPT-3上的模型质量方面...
对于大型模型来说,重新训练所有模型参数的全微调变得不可行。比如GPT-3 175B,模型包含175B个参数吗,无论是微调训练和模型部署,都是不可能的事。所以Microsoft 提出了低秩自适应(Low-Rank Adaptation, LoRA),它冻结了预先训练好的模型权重,并将可训练的秩的分解矩阵注入到Transformer体系结构的每一层,从而大大...
所以Microsoft 提出了低秩自适应(Low-Rank Adaptation, LoRA),它冻结了预先训练好的模型权重,并将可训练的秩的分解矩阵注入到Transformer体系结构的每一层,从而大大减少了下游任务的可训练参数数量。 LoRA 对于预训练的权重矩阵W0,可以让其更新受到用低秩分解表示后者的约束...
LoRA是一种针对大型语言模型的参数高效调优策略,其核心理念是通过只训练选定权重矩阵的低秩扰动来节省内存和计算资源。在传统的完全微调方法中,模型的所有参数都需要进行更新,这不仅需要巨大的计算资源,还可能导致模型在微调过程中“遗忘”之前学到的知识。而LoRA则通过引入一个低秩矩阵,仅对这部分矩阵进行训练,从而实现...
得益于其独特的技术原理,LoRA(Low-Rank Adaptation of Large Language Models,大型语言模型的低秩适配)模型能够帮助用户通过自己的数据训练出符合特定需求的模型,其中的关键环节包括: 01 低秩矩阵分解 LoRA 通过将模型的权重矩阵分解为低秩矩阵来实...
LoRA:大模型的低秩自适应微调模型 对于大型模型来说,重新训练所有模型参数的全微调变得不可行。比如GPT-3 175B,模型包含175B个参数吗,无论是微调训练和模型部署,都是不可能的事。所以Microsoft 提出了低秩自适应(Low-Rank Adaptation, LoRA),它冻结了预先训练好的模型权重,并将可训练的秩的分解矩阵注入到...
LoRA:大模型的低秩自适应微调模型 对于大型模型来说,重新训练所有模型参数的全微调变得不可行。比如GPT-3 175B,模型包含175B个参数吗,无论是微调训练和模型部署,都是不可能的事。所以Microsoft 提出了低秩自适应(Low-Rank Adaptation, LoRA),它冻结了预先训练好的模型权重,并将可训练的秩的分解矩阵注入到...
洛卡(LoRA)是一种针对大型语言模型的低秩适应方法。它通过在预训练模型的基础上,注入可训练的低秩分解矩阵,从而大幅减少下游任务中的可训练参数数量。 ## 为什么 随着语言模型规模的不断扩大,如GPT-3等175B参数的模型,全参数微调变得不切实际。部署每个微调后的模型实例不仅成本高昂,而且存储和计算资源需求巨大。因此...
LoRA是一种针对大型语言模型的参数高效调优策略,其核心理念是通过只训练选定权重矩阵的低秩扰动来节省内存和计算资源。在传统的完全微调方法中,模型的所有参数都需要进行更新,这不仅需要巨大的计算资源,还可能导致模型在微调过程中“遗忘”之前学到的知识。而LoRA则通过引入一个低秩矩阵,仅对这部分矩阵进行训练,从而实现...
向transformer架构中的每一层,注入可训练的 rank decomposition matrices-(低)秩分解矩阵,从而可以显著地减少下游任务所需要的可训练参数的规模。 效果举例: 相比于使用Adam的gpt3 175B,LoRA可以降低可训练参数规模,到原来的1/10000,以及GPU内存的需求是原来的1/3。 GitHub - microsoft/LoRA: Code for loralib, ...