来自专栏 · LeetCode·力扣·300首 目录 收起 读题 解法一,dp 动态规划 解法解释 针对DP解法的解释 1. 状态定义 2. 基础状态 3. 状态转移方程 4. 遍历顺序 5. 更新最长回文子串信息 6. 返回结果 复杂度分析 读题 解法一,dp 动态规划 class Solution: def longestPalindrome(self, s: str) -> st...
【LeetCode】5. Longest Palindromic Substring 陌儿的百科全书 来自专栏 · LeetCode 题目: Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example 1: Input: "babad" Output: "bab" Note: "aba" is also a valid answer. ...
[LeetCode] 5. Longest Palindromic Substring 最长回文子串 本题求给定字符串的最长回文子串,首先可以想到使用暴力的方法,求出给定字符串的所有的回文子串的长度,取长度最长的子串,具体地分回文子串长度为奇数和长度为偶数讨论,时间复杂度O(n^2),但此暴力求解的方法在leetcode上会报超时错误,具体代码如下: 一. 暴...
Given a strings, returnthe longestpalindromicsubstringins. Example 1: Input:s = "babad"Output:"bab"Explanation:"aba" is also a valid answer. Example 2: Input:s = "cbbd"Output:"bb" Constraints: 1 <= s.length <= 1000 sconsist of only digits and English letters. Accepted 3.8M Submission...
public class Solution { /** * @param s: input string * @return: the longest palindromic substring */ public String longestPalindrome(String s) { // write your code here char[] S = s.toCharArray(); int sLength = S.length; String[][] f = new String[sLength ][sLength ]; return ...
Can you solve this real interview question? Longest Palindromic Subsequence - Given a string s, find the longest palindromic subsequence's length in s. A subsequence is a sequence that can be derived from another sequence by deleting some or no elements
#ms, m = x, j-i+1 # x 一定比原来的 ms 长,一开始想的是 m += 1,结果可能几个以后才是回文子串。 ms = x return ms 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 精减一下 ...
首先,我们通过在字母之间插入特殊字符'#'来将输入字符串S转换为另一个字符串T,这么做的原因很快就会很快清楚。例如:S =“abaaba”,T =“#a#b#a#a#b#a...
Leetcode-Medium 5. Longest Palindromic Substring,题目描述给定一个字符串s,找到s中最长的回文子串。你可以假设s长度最长为1000。Example1:Input:ut:"cbbd"Output:"bb"思路假如输入的字符串长度就...
方法/步骤 1 题目叙述Given a stringS, find the longest palindromic substring inS. You may assume that the maximum length ofSis 1000, and there exists one unique longest palindromic substring.2 本体可以使用动态规划去解答,但是我用了之后没能AC,也可以使用从中间向两边延伸去查找最长回文子串。先提供第...