*/publicstaticStringlongestPalindrome(String s){if(s==null||s.length()<2){returns;}int maxLength=0;String longest=null;int length=s.length();boolean[][]table=newboolean[length][length];// 单个字符都是回文for(int i=0
Can you solve this real interview question? Longest Palindromic Substring - Given a string s, return the longest palindromic substring in s. Example 1: Input: s = "babad" Output: "bab" Explanation: "aba" is also a valid answer. Example 2: Input
public String longestPalindrome(String s) { int maxLength = 0; int maxStart = 0; int len = s.length(); //i是字符串长度 for(int i = 0; i < len; i++){ //j是字符串起始位置 for(int j = 0; j < len - i; j++){ //挨个判断是否回文 if(isPalindrome(s,i,j) && (i+1)>...
以下代码参考了Code Ganker的,这种方法使用两层循环,时间复杂度是O(n^2) 1publicString longestPalindrome(String s) {2if(s ==null|| s.length()==0)3return"";4boolean[][] palin =newboolean[s.length()][s.length()];5String res = "";6intmaxLen = 0;7for(inti=s.length()-1;i>=0;i...
LeetCode the longest palindrome substring 回文检测,参考http://blog.csdn.net/feliciafay/article/details/16984031 使用时间复杂度和空间复杂度相对较低的动态规划法来检测,具体的做法 图一 偶数个回文字符情况 图二 奇数个回文字符情况 核心就是如果一个子串是回文,如果分别向回文左右侧扩展一个字符相同,那么回文...
public String longestPalindrome(String s) { if (s == null || s.length() < 2) return s; //return as result String longest = s.substring(0, 1); for (int i = 0; i < s.length()-1; i++) { //get 'ABA' type palindrome ...
We can improve the above code by moving the palindrome and longest lengths check into a different function. However, I have left that part for you. :) Please let me know if there are any other better implementations or if it fails in any case....
Longest Palindromic Substring最长回文子串 最长回文子串 思想 代码 结果 改进 DP的改进 巧妙的方法:从中心扩展 Manacher’s Algorithm (O(n)) 总结 思想 这道题是 DP 下的题目,找一个字符串中最长的回文子串。 首先要解决判别回文子串的问题。 其次,利用DP的思想: 把字符串的长度作为分解子问题的标准 长度为...
对于字符串S, 要找到它最长的回文子串,能想到的最暴力方法,应该是对于每个元素i-th都向左向右对称搜索,最后用一个数组span 记录下相对应元素i-th为中心的回文子串长度。 那么问题来了: 1. 这样的方法,对于奇回文子串和偶回文子串的处理不一样,比如所“acbca” 和“acbbca” ...
Longest Palindrome Substring Given a stringS, find the longest palindromic substring inS. You may assume that the maximum length ofSis 1000, and there exists one unique longest palindromic substring. Analyse: Consider every index i in the string. Since there are two possibilities of a palindrome:...