CSWin Transformer最核心的部分就是cross-shaped window self-attention,如下所示,首先将self-attention的mutil-heads均分成两组,一组做horizontal stripes self-attention,另外一组做vertical stripes self-attention。 所谓horizontal stripes self-attention就是沿着H维度将tokens分成水平条状windows,对于输入为HxW的tokens,...
Transformer落地Bayesian思想的时候权衡多种因素而实现最大程度的近似估计Approximation,例如使用了计算上相对CNN、RNN等具有更高CPU和内存使用性价比的Multi-head self-attention机制来完成更多视角信息集成的表达,在Decoder端训练时候一般也会使用多维度的Prior信息完成更快的训练速度及更高质量的模型训练,在正常的工程落地中...
In this paper, the parallel network structure of the local-window self-attention mechanism and the equivalent large convolution kernel is used to realize the spatial-channel modeling of the network so that the network has better local and global feature extraction performance. Experiments on the RSS...
Thus, this paper proposes a novel Local Self-Attention in Transformer (LSAT) for a visual question answering model to address these issues. The LSAT model simultaneously models intra-window and inter-window attention by setting local windows for visual features. Therefore, the LSAT model can ...
这次的文章我们主要来关注视觉应用中的Self-attention机制及其应用——Non-local网络模块。 1. 视觉应用中的self-attention机制 1.1 Self-attention机制 由于卷积核作用的感受野是局部的,要经过累积很多层之后才能把整个图像不同部分的区域关联起来。所以在会议CVPR2018上Hu J等人提出了SENet,从特征通道层面上统计图像的全...
*Embedded Gaussian操作与self-attention很类似,实际上,self-attention是其一个特例。但是作者认为,这种注意力不是不可或缺的,f函数的表现形式还可以有下列两种: Dot product 通过点乘进行相似度计算: 归一化因子可以直接设置为N,也就是X的所有位置数。
Focal Self-Attention的结构如上图所示,首先明确三个概念: Focal levels :可以表示FSA中对特征关注的细粒度程度。level L的下标越小,对特征关注也就越精细。 Focal window size :作者将token划分成了多个sub-window,focal window size指的是每个sub-window的大小。
CNN的感受野受卷积核大小的限制,导致了CNN实际上是一种Local的信息建模;而Self-Attention(SA)是将每个位置和所有位置计算attention weight,考虑了每个点之间的联系,因此SA是一种Global的建模。 起初,CNN大多用在CV领域中,而SA大多用在NLP领域中。但是随着SA和CNN各自优缺点的显现(如下表所示),越来越多的文章对这两...
self-attention主要结论: Methods PairwiseSelf-attention乘在beta(xj)上的weight只由xi,xj决定。可以通过加position encoding让网络知晓xi,xj的位置关系。 PatchSelf-attention乘在beta(xj)上的weight是由整个batch R(i) (batch里所有的j locations) 决定的。这和 ...
Attention-mechanism-implementation pytorch for Self-attention、Non-local、SE、SK、CBAM、DANet According to the different application domains of the attention mechanism, that is, the different ways and positions of attention weights are applied, the article divides the attention mechanism into spatial doma...