ICLR这篇文章的先前版本 (Demystifing Local Vision Transformer)在2021年六月就首次正在arxiv公布并分析了local attention的三个强大设计原则: (1) 稀疏连接。指一些输出变量和一些输入变量直接没有相互连接。它有效的减少了模型的复杂度而不减少输入输出变量个数。在Local Attention当中,稀疏连接体现在两个方面:一是L...
Local attention本质上实在一个2D local window内进行特征聚合,但其每个位置的聚合权重,通过KQV之间计算Attention similarity得到(主要包括dot-production, scaling, softmax),是一个无参数的动态计算的局部特征计算模块。 aij为聚合权重,xij为待...
和Swin Transformer一样,CSWin Transformer也是一种local self-attention网络,相比Swin的方形window self-attention,CSWin采用的是十字形(cross-shaped)window self-attention,这使得CSWin Transformer的建模能力更强,在分类和检测等任务上也超过Swin Transformer,其中CSWin-L在语义分割数据集?ADE20K上达到了SOTA:55.7 mIoU...
Local self-attentionGrid/regional visual featuresVisual question answeringVisual Question Answering (VQA) is a multimodal task that requires models to understand both textual and visual information. Various VQA models have applied the Transformer structure due to its excellent ability to model self-...
Attention! 注意力(Attention)在近些年成为深度学习领域一个极其受欢迎的概念,同时作为一个强有力的工具也被集成到了各种模型中来处理相应的任务。下面将介绍注意力的起源、不同的注意力机制、各种使用注意力机制的模型,例如transformer、SNAIL。 从某种程度上看,注意力是人在处理过载信息的一种手段,具体表现为我们如何...
1.transformer transformerself-attention当前编码的词和整个句子所有词做attention,权重加在所有句子上获得当前的表示 encoder-decoder-attention当前解码的单元和编码器的所有输出做attention,权重加在所有编码输出上,获得当前的表示 1.1self-attention单头 多头 1.2 残差 2.Bert ...
Local Attention Transformer A full local attention transformer import torch from local_attention import LocalTransformer model = LocalTransformer( num_tokens = 256, dim = 512, depth = 6, max_seq_len = 8192, causal = True, local_attn_window_size = 256 ).cuda() x = torch.randint(0, 256...
研究表明,Attention机制虽然关键,但并非唯一决定因素。深层结构的性能损失与秩的双指数衰减关系证明了多层结构的复杂性和计算成本。因此,理解Transformer和non-local之间的本质联系,对于优化模型结构和提升计算机视觉任务的性能具有重要意义。此外,这些网络结构的融合不仅揭示了Transformer在计算机视觉领域的潜在...
We present an algorithm for implementing LAM in tensor algebra that runs in time and memory O(nlogn), significantly improving upon the O(n^2) time and memory complexity of traditional attention mechanisms. We also note the lack of proper datasets to evaluate long-horizon forecast models. Thus...
Slide-Transformer: Hierarchical Vision Transformer with Local Self-Attention Self-attention mechanism has been a key factor in the recent progress of Vision Transformer (ViT), which enables adaptive feature extraction from global co... X Pan,T Ye,Z Xia,... - 《Arxiv》 被引量: 0发表: 2023...