if exclude: layers = filter(lambda l: l.name not in exclude, layers) if by_name: #修改第二处 #topology.load_weights_from_hdf5_group_by_name(f, layers) saving.load_weights_from_hdf5_group_by_name(f, layers) else: #修改第三处 #topology.load_weights_from_hdf5_group(f, layers) savin...
edwardyehuang linked a pull request Nov 22, 2024 that will close this issue FIX BUG in load_weights_from_hdf5_group_by_name" legacy_h5_format.py #20537 Open Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment Assignees...
# store weights before loading pre-trained weights preloaded_layers = self.model.layers.copy() preloaded_weights = [] for pre in preloaded_layers: preloaded_weights.append(pre.get_weights()) # load pre-trained weights self.model.load_weights(filepath, by_name=True) # compare previews weig...
网上资料说造成这个错误的原因是keras版本不对,在mask-rcnn仓库文件中的requirement.txt中提到要求安装的keras>=2.0.8 而load_weights_from_hdf5_group_by_name只在keras2.0.8的版本中出现,不会出现在最新的keras版本中出现。我查看了下当前安装的keras版本,是2.2.0,按照建议,将其更改到2.0.8,操作如下—— 先查...
而load_weights_from_hdf5_group_by_name 只在 keras2.0.8 的版本中出现,不会出现在最新的 keras 版本中出现。我查看了下当前安装的 keras 版本,是2.2.0,按照建议,将其更改到2.0.8,操作如下: 先查看版本,然后用 pip uninstall keras 将其卸载,再用 pip install keras==2.0.8 安装指定版本。重新安装后再执...
解决方案一:报错是由于keras版本不对造成的。load_weighs_from_hdf5_group_by_name这个属性只在keras 2.0.8版本中出现(不清楚现在的新版本是否支持这个属性),要是你的版本大于2.0.8,就找不到这个属性了。解决办法是卸载现有版本,安装keras 2.0.8。具体操作: ...
而load_weights_from_hdf5_group_by_name只在 keras2.0.8 的版本中出现,不会出现在最新的 keras 版本中出现。我查看了下当前安装的 keras 版本,是2.2.0,按照建议,将其更改到2.0.8,操作如下: 先查看版本,然后用 pip uninstall keras 将其卸载,再用 pip install keras==2.0.8 安装指定版本。重新安装后再执行...
Artifacts – actions.yml on: pull_request Check the code format 1m 35s Matrix: Run tests 1/4 job completed Show all jobs Oh hello! Nice to see you. Made with ️ by humans.txt Annotations 1 error Check the code format Process completed with exit code 2....
C:\ProgramData\Anaconda3\lib\site-packages\mask_rcnn-2.1-py3.6.egg\mrcnn\model.py in load_weights(self, filepath, by_name, exclude) 2117 2118 if by_name: -> 2119 topology.load_weights_from_hdf5_group_by_name(f, layers) 2120 else: ...
weights[name] = node.get_weights() return weights def set_named_weights(self, weights): '''Takes a dictionary of weights keyed by node name and sets those respective nodes' weights to the associated value. Will attempt to recurse, using `set_named_weights` on subgraphs; otherwise calls `...