解析 根据分部积分法的原理:∫udv=uv-∫vdu,而lnx可视作1*lnxu=lnx,dv=(1)dxdu=(1/x)dx,v=x∴∫lnx dx=∫(1)(lnx) dx=∫udv=uv-∫vdu=(lnx)(x)-∫x (1/x)dx=xlnx-∫dx=xlnx-x+C或∫lnx d(x)=x*lnx-∫x d(lnx)=xlnx-∫x*1/x dx=xlnx-∫dx=xlnx-x+C...