ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,...
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向过...
1. 为了证明 \( \ln(x+1) \) 与 \( x \) 是等价无穷小,我们可以计算极限 \(\lim_{{x \to 0}} \frac{\ln(1+x)}{x}\).2. 使用洛必达法则,我们求极限 \(\lim_{{x \to 0}} \frac{\ln(1+x)}{x}\) 的分子和分母的导数。3. 分子 \(\ln(1+x)\) 的导数是 \(...
-x,sin(-x),tan(-x)因为ln(1+x)的等价无穷小是x;sinx;tanx;e^x-1;又ln(1-x)=ln[1+(-x)]。
因为x→0时,两者都是无穷小,两者比值的极限是1。由等价无穷小的定义,所以两者是等价无穷小。
可以,当x趋向1时,lnx和x-1是等价无穷小。注意已知是:当x趋向0时,ln(x+1)和x是等价无穷小。必须注意极限的过程。
是等价无穷小不是等价无穷大 猴王中王 数项级数 6 楼上正解 涛声依旧 实数 1 令t=1/x,该等价无穷小就等价无穷小了 叫我第一名 实数 1 一眼e,奥特家族的图呢 米勒鲁卡提耶 偏导数 8 等价无穷大 F--hawk丶 实数 1 抓大头,一下就看出来了 xxx___xxx😋 实数 1 无穷大用等价...
ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。简介 1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2...
limln(1+x)/x (x趋于0)=lim1/1+x (运用洛必达法则)=1。所以 ln(1+x)和x是等价无穷小。等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别...
因为当x→0时,lim(x→0)(ln(x+1)/x)=lim(x→0)(1/(1+x)/1)=1(洛必达法则)。所以lim(x→0)(ln(1+x))=lim(x→0)(x)。所以是等价无穷小