3xln3的导数可以通过求导法则来计算。首先,我们知道ln3是一个常数,因此可以将3看作一个常数来处理。然后利用导数的运算规则进行计算。 首先,我们知道对于常数c和函数f(x),常数乘以函数的导数等于常数乘以函数的导数,即(cf(x))' = c(f(x))'。所以3xln3的导数可以分开计算。首先计算3x的导数,然后再计算ln3...
=1/tan3x*[3/cos²3x]*3 =1/(tan3x*cos²3x)=1/sin3x*cos3x =2/2sin3x*cos3x =2/sin6x
=[1/sec(3x)]*[sec(3x)tan(3x)]*(3x)=[1/sec(3x)]*[sec(3x)tan(3x)]*3 =3tan(3x)
解析 方法一利用复合函数求导.[ln(3x)]'=(1/3x)*(3x)'=(1/3x)*3=1/x另外一种解法是利用对数性质.ln(3x)=ln3+lnx[ln(3x)]'=(ln3)'+(lnx)'=0+1/x=1/x希望帮助你解决了本题.祝学习顺利.结果一 题目 ln3x的导数是什么 答案 方法一利用复合函数求导. [ln(3x)]'=(1/3x)*(3x)'=(1...
搜索智能精选题目对于函数y=ln(3x)求导答案所以y'=(ln3x)'*(3x)' =1/3x *3 =1/x
化简,\frac{0.5⋅2}{x} 即,g'(x)=\frac{1}{x} 对于\frac{∂ln(3x)}{∂x} 应用...
1个回答提问专业答主,5分钟内极速回复 ly524118900 2022.04.09 满意答案 ln3x的导数是1/x。 解析如下: 方法一:利用复合函数求导。 [ln(3x)]'=(1/3x)*(3x)'=(1/3x)*3=1/x 方法二:利用对数性质。 ln(3x)=ln3+lnx [ln(3x)]'=(ln3)'+(lnx)'=0+1/x=1/x 导数的意义: 函数y=f(x)在x...
百度试题 结果1 题目对于函数y=ln(3x)求导 相关知识点: 试题来源: 解析 所以y'=(ln3x)'*(3x)'=1/3x *3=1/x反馈 收藏
复合函数求导:f(g)'=f'(g)*g'所以y'=(ln3x)'*(3x)'=1/3x *3 =1/x
百度试题 结果1 题目y=lnsec3x的求导过程。答案为y=3tan3x。 相关知识点: 试题来源: 解析 。。。知道答案了不是 反馈 收藏