根据泰勒展开式:ln(1+x)=x-x2/2+x^3/3-x^4/4+...代入x2 ln(1+x2)=x2-x^4/2+x^6/3-...因此ln(1+x2)的等价无穷小应该是x2。设有两个命题p和q,如果由p作为条件能使得结论q成立,则称p是q的充分条件;若由q能使p成立则称p是q的必要条件;如果p与q能互推(即无论是...
在求解泰勒展开时,我们通常先求出原函数在指定点处的导数序列,再代入这些导数值构建级数。比如,对于ln(1+x),我们在0点处展开时,会得到一个级数表达式。接着,我们只需将x替换为x^2即可得到ln(1+x^2)的泰勒展开式。需要注意的是,我们是在求完所有导数后再代入,而不是先代入x^2再求导。...
lnx 在x=t 处泰勒展开得 lnx=lnt+(xt−1)−12(xt−1)2+13(xt−1)3−... lnx 在x=e 处泰勒展开得 lnx=xe−12(xe−1)2+13(xe−1)3−... x=1 处帕德逼近及其他逼近 ln(1+x)=x−x22+x33−x44+... ln(1−x)=−x−x22...
ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + x^5/5 - ..., (-1 < x < 1) (−1<x<1) 可以选择 x=1 x=1,然后将泰勒级数修改为: ln(1+x) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - ..., (-1 < x < 1) (−1<x<1) 然后再计算这个式子的前N项和,设为 S_N S...
一阶导是2x/(1+x²)。把0一代,是0,二阶导是[2(1+x²)-4x²]/(1+x²)²=2(1-x²)/(1+x²)²。根据等价无穷小,ln(1+x)确实是等价于x的。高等数学中的应用 在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:(1)应用泰勒中值定理(泰勒公式)可以...
解析如下:根据泰勒展开式:ln(1+x)=x-x2/2+x^3/3-x^4/4+...代入x2 ln(1+x2)=x2-x^4/2+x^6/3-...因此ln(1+x2)的等价无穷小应该是x2。设有两个命题p和q,如果由p作为条件能使得结论q成立,则称p是q的充分条件;若由q能使p成立则称p是q的必要条件;如果p与q能互推(...
泰勒展开式是函数在某一点的无穷级数展开,通常用来近似计算复杂函数的值。对于自然对数函数 ln(1+x),其泰勒展开式可以在 x=0 处得到,并被广泛运用于数学和工程领域。自然对数函数 ln(1+x) 在 x=0 处的泰勒展开式为:ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ... + (-1)...
ln(1−x2)=−x2−(−x2)22+(−x2)33−(−x2)44+⋯
的泰勒展开:⊛lnx的泰勒展开: 当时1.当x>0时:lnx=21(x−1x+1)+23(x−1x+1)3+25(x−1x+1)5+27(x−1x+1)7+... 当时:2.当x⩾12时:lnx=x−1x+12(x−1x)2+13(x−1x)3+14(x−1x)4+... (1+x)a=1+ax+a(a−1)2!x2+a(a−1)(a−2)3!x3+a...
ln(1-x)的泰勒级数展开是:ln(1-x) = ln[1+(-x)] = Σ (-1)^(n+1) (-x)^n / n = Σ x^n / n ,-1≤ x。泰勒展开f(x)= f(0)+ f′(0)x+ f″(0)x ²/ 2!+...+ fⁿ(0)...f(x)= ln(x+1)f(0)=ln1=0f′(0)=1/(x+1)=1f″(0)=-(x+1)^(-2)=-1...