ln(1+x)和x的大小关系与x的取值范围相关。在0≤x≤1时,ln(1+x) ≤ x;当x>1时,ln(1+x) < x。具体分析如下:
f'(x) = -x/(1 + x) 当x > 0时,f'(x) < 0,f(x)单调递减; 当x < 0时,f'(x) > 0,f(x)单调递增。 因此,f(x)在x = 0处取得最大值,即f(0) = 0。 所以,对于任意实数x,有ln(1 + x) < x。 以上为西华大学期末数学试卷的答案,仅供参考。实际考试答案以官方公布为准。反馈...
所以:ln(1+x)<x 这种做法对吗?道理是什么? 相关知识点: 试题来源: 解析 这种做法是错误的,应该用构造函数方法,然后根据函数的单调性来判断大小关系令f(x)=ln(1+x)-xf'(x)=1/(1+x)-1≤0 (0≤x≤1)因此函数f(x)在0≤x≤1递减,注意不是单减,除去x=0这个点才是单减。f(0)=0因此f...
【答案】:[证明]令f(x)=ln(1+x)-x,则f(0)=0,f'(x)=<0,所以,f(x)在(0,+∞)内单减,从而当x>0时,f(x)<f(0)=0,即ln(1+x)<x.[点评]此结论可以直接使用.
设f(x)=x-ln(1+x),x>=0 则f'(x)=1-1/(1+x)=x/(1+x) 当x>0时,f'(x)>0 故f(x)在(0,+∞)上单调递增, 当x>0时,f'(x)>f(0)=0 即ln(1+x)<x,x>o
ln(1+x)<x
y=ln(1+x)的定义域为1+x>0,即x>-1;y=x定义域是R;因此只能在(-1,+∞)比较.y'=1/(1+x),故y'(0)=1;即y=ln(1+x)在(0,0)处的切线与直线y=x重合;而当x≠0时曲线y=ln(1+x)都在直线y=x的下面.故可断言:x=0时ln(1+x)=x;当x≠0时恒有x>ln(1+x).结果...
证明:当x≥ 0时,ln (1+x)≤ x 相关知识点: 试题来源: 解析 证明:设 f(x)=ln (x+1)-x 则f'(x)=1/(x+1) -1=-x/(x+1), 当x≥ 0时 f'(x)≤ 0, 故此时 f(x)为减函数 所以f(x)≤ f(0)=0, 所以ln (1+x)-x≤ 0,即ln (1+x)x≤ x...
巧用ln(1+x)小于x证明不等式
5. 当 0 ≤ x ≤ 1 时,f'(x) ≤ 0,说明函数 f(x) 在区间 [0, 1] 上是递减的,需要注意的是,除了 x = 0 这一点外,f(x) 并不是严格单调递减的。6. 因此,对于 0 ≤ x ≤ 1,有 f(x) = ln(1+x) - x ≤ 0,等号成立仅当 x = 0。7. 即 ln(1+x) ≤ x,...