f'(x) = -x/(1 + x) 当x > 0时,f'(x) < 0,f(x)单调递减; 当x < 0时,f'(x) > 0,f(x)单调递增。 因此,f(x)在x = 0处取得最大值,即f(0) = 0。 所以,对于任意实数x,有ln(1 + x) < x。 以上为西华大学期末数学试卷的答案,仅供参考。实际考试答案以官方公布为准。反馈...
证明:当x≥ 0时,ln (1+x)≤ x 相关知识点: 试题来源: 解析 证明:设 f(x)=ln (x+1)-x 则f'(x)=1/(x+1) -1=-x/(x+1), 当x≥ 0时 f'(x)≤ 0, 故此时 f(x)为减函数 所以f(x)≤ f(0)=0, 所以ln (1+x)-x≤ 0,即ln (1+x)x≤ x...
ln(1+x)<x
即y=ln(1+x)-x≤0恒成立,当且仅当x=0时取等号 ∴在x≠0时,恒有ln(1+x)<x
ln(1+x)<x 贺兰堇 七彩云南 7 可以用单调有界原理,这个极限叫做欧拉常数。 轻仞死神 十三罄钟 13 我想法大概是inx拆成in1*2*3/2*…然后变in的加法,和上面的比较,再换种拆法再比较 呵呵宝贝enjoy 十万溪泽 10 分母Lnn大于1小于n-1 分子最大都取1为n 最小都取1/n为1 然后组合一下 贴吧用...
题目 证明:ln(1+x)小于等于x,当x大于-1时成立用导数证 相关知识点: 试题来源: 解析e^[ln(1+x)-x]=(1+x)/e^x档x>-1的时候e^[ln(1+x)-x]=(1+x)/e^x又因为e^x=1+x+x^2/2+……所以e^x>1+x所以e^[ln(1+x)-x]>1所以ln(1+x)-x>0所以ln(1+x)>x...
所以:ln(1+x)<x 这种做法对吗?道理是什么? 相关知识点: 试题来源: 解析 这种做法是错误的,应该用构造函数方法,然后根据函数的单调性来判断大小关系令f(x)=ln(1+x)-xf'(x)=1/(1+x)-1≤0 (0≤x≤1)因此函数f(x)在0≤x≤1递减,注意不是单减,除去x=0这个点才是单减。f(0)=0因此f...
设f(x)=x-ln(1+x),x>=0 则f'(x)=1-1/(1+x)=x/(1+x) 当x>0时,f'(x)>0 故f(x)在(0,+∞)上单调递增, 当x>0时,f'(x)>f(0)=0 即ln(1+x)<x,x>o
设f(x)=e^x 对任意b>0,f(x)在[0,b]连续,在(0,b)可导.根据中值定理,存在0 (f(b)-f(0))/(b-0)>1 -> f(b)>b+1 -> e^b>b+1 -> b>ln(1+b)即对任意x>0,有x>ln(1+x)
y=ln(1+x)的定义域为1+x>0,即x>-1;y=x定义域是R;因此只能在(-1,+∞)比较.y'=1/(1+x),故y'(0)=1;即y=ln(1+x)在(0,0)处的切线与直线y=x重合;而当x≠0时曲线y=ln(1+x)都在直线y=x的下面.故可断言:x=0时ln(1+x)=x;当x≠0时恒有x>ln(1+x).结果...