LMMs-Eval 的最终目标是找到一种 1. 覆盖广 2. 成本低 3. 零数据泄露 的方法来评估 LMMs。然而,即使有了 LMMs-Eval,作者团队发现想同时做到这三点困难重重,甚至是不可能的。如下图所示,当他们将评估数据集扩展到 50 多个时,执行这些数据集的全面评估变得非常耗时。此外,这些基准在训练期间也容易受到污染...
统一接口: LMMs-Eval 在文本测评框架 lm-evaluation-harness 的基础上进行了改进和扩展,通过定义模型、数据集和评估指标的统一接口,方便了使用者自行添加新的多模态模型和数据集。 一键式启动:LMMs-Eval 在 HuggingFace 上托管了 80 多个(且数量不断增加)数据集,这些数据集精心从原始来源转换而来,包括所有变体、版本...
统一接口: LMMs-Eval 在文本测评框架 lm-evaluation-harness 的基础上进行了改进和扩展,通过定义模型、数据集和评估指标的统一接口,方便了使用者自行添加新的多模态模型和数据集。 一键式启动:LMMs-Eval 在 HuggingFace 上托管了 80 多个(且数量不断增加)数据集,这些数据集精心从原始来源转换而来,包括所有变体、版本...
提出了针对LMM(Language Multimodal Models)的统一评价框架LMMS-EVAL,覆盖了超过50个任务和10个模型,确保了透明度和可重复性。 设计了两种不同的评估方案:高效且全面的LMMS-EVAL LITE和实时更新的LIVEBENCH,以满足不同需求下的评估成本和质量要求。 对当前LMM评估过程中存在的“三难困境”进行了深入探讨,并提出了未来...
简介:【9月更文挑战第15天】LMMS-EVAL 是一项由多家研究机构联合开发的多模态模型评测框架,旨在为大型多模态模型提供全面、低成本且零污染的评测基准。该框架包含超过50个任务和10多个模型,覆盖图像分类、目标检测、语音识别等多个领域,使研究人员能够在有限资源下轻松评估和比较模型性能。通过利用实时更新的数据源,LM...
Accelerating the development of large multimodal models (LMMs) with lmms-eval - lmms-eval/miscs/repr_torch_envs.txt at main · huggingface/lmms-eval
lmms_eval Update llama_vision.py (#431) Nov 29, 2024 miscs [feat] remove registeration logic and adding language evaluation task… Sep 1, 2024 tools [Release] lmms-eval v0.3.0 release (#428) Nov 27, 2024 .gitignore [feat] changes on llava_vid model (#291) Oct 13, 2024 .pre-...
统一接口: LMMs-Eval 在文本测评框架 lm-evaluation-harness 的基础上进行了改进和扩展,通过定义模型、数据集和评估指标的统一接口,方便了使用者自行添加新的多模态模型和数据集。 一键式启动:LMMs-Eval 在 HuggingFace 上托管了 80 多个(且数量不断增加)数据集,这些数据集精心从原始来源转换而来,包括所有变体、版本...
统一接口: LMMs-Eval 在文本测评框架 lm-evaluation-harness 的基础上进行了改进和扩展,通过定义模型、数据集和评估指标的统一接口,方便了使用者自行添加新的多模态模型和数据集。 一键式启动:LMMs-Eval 在 HuggingFace 上托管了 80 多个(且数量不断增加)数据集,这些数据集精心从原始来源转换而来,包括所有变体、版本...
统一接口: LMMs-Eval 在文本测评框架 lm-evaluation-harness 的基础上进行了改进和扩展,通过定义模型、数据集和评估指标的统一接口,方便了使用者自行添加新的多模态模型和数据集。 一键式启动:LMMs-Eval 在 HuggingFace 上托管了 80 多个(且数量不断增加)数据集,这些数据集精心从原始来源转换而来,包括所有变体、版本...