The reduction in key-value heads comes with a potential accuracy drop. Additionally, models that need to leverage this optimization at inference need to train (orat least fine-tunedwith ~5% of training volume)
Early Exit Inference LITE 在神经网络的中间层添加预测能力,当置信度较高时,token 会提前退出,最高可节省 38% FLOPS。 注意力机制优化(Attention Optimization) FlashAttention 1, 2, 3 通过内存分块实现快速、精确的注意力计算,速度与内存效率优于标准实现方式。 ROFormer 引入旋转位置编码(Rotary Position Embedding...
低秩分解(Low-rank Factorization):使用矩阵分解技术降低参数矩阵的秩,减少参数数量。 推理优化(Inference Optimization) 推理优化指的是一系列技术和方法,旨在加快模型在实际应用中的预测速度和提高效率。这包括: 编译器优化:使用专门的深度学习编译器,如TensorRT、TVM等,将模型转换成特定硬件平台上效率更高的形式。 硬件...
nvidia websites use cookies to deliver and improve the website experience. see our cookie policy for further details on how we use cookies and how to change your cookie settings. accept
Early Exit Inference LITE 在神经网络的中间层添加预测能力,当置信度较高时,token 会提前退出,最高可节省 38% FLOPS。 注意力机制优化(Attention Optimization) FlashAttention 1, 2, 3 通过内存分块实现快速、精确的注意力计算,速度与内存效率优于标准实现方式。
Generally speaking, LLM inference is a memory bandwidth bounded task for weight loading. Weight-only quantization (WOQ) is an effective performance optimization algorithm to reduce the total amount of memory access without losing accuracy. int4 GEMM with a weight-only quantization (WOQ) recipe speci...
4 Inference 首先请参考2.2 Model Architecture中,关于基本推理过程,KV Cache,GQA部分的内容,同时请参考3.2 SFT中关于PagedAttention的介绍。 4.1 Parallelism Parallelism,LLM分布式训练推理的一部分,包括Data Parallelism和Model Parallelism,本节做一些介绍。同样涉及到OS的一些概念。
Optimizing inference proxy for LLMs Topics agent optimization api-gateway proxy-server openai agents monte-carlo-tree-search moa mixture-of-experts openai-api large-language-models llm prompt-engineering chain-of-thought genai llm-inference llmapi agentic-framework agentic-workflow agentic-ai Resources...
Prompt Optimization with DSPy 今天作为开篇,我们先来聊聊 prompt 自动优化相关的工具和框架,核心围绕着斯坦福的知名项目DSPy[2]来展开。 问题 你在日常开发 LLM 应用的流程是怎么样的?常见的流程一般是: 明确需求,如输入输出内容。 准备几个测试用例。
For shared online services continuous batching is indispensable, whereas offline batch inference workloads can achieve high throughput with simpler batching techniques. In depth optimizations: Standard inference optimization techniques are important (eg. operator fusion, weight quantization) for LLMs but it'...