没有Lora之前,LLM在下游应用(fine tuning)的时候,需要全量更新base 模型的权重,但是一般base 模型都非常大,导致 fine tuning特别耗费资源。Lora 用于通过少量资源进行 LLM fine-tuning。 LoRA 的最大优势是速度更快,使用的内存更少;因此,可以在消费级硬件上运行。 2.2 一句话总结 LoRA:固定transformer结构中原本的模...
然后再对模型进行finetuning来更好满足自己的下游任务。那么对于如果要训练一个专家模型。预训练也是必不可缺的工作。不管是预训练还是finetuning(微调),无论选用何种方案,都避免不了训练中产生的灾难性遗忘问题,那么怎么减少和避免这种情况的发生,也是本文想讲的一个重点。对于推理,在GPU资源不富裕的情况,如何最小化...
LLM基础模型系列:Fine-Tuning总览 由于对大型语言模型,人工智能从业者经常被问到这样的问题:如何训练自己的数据?回答这个问题远非易事。生成式人工智能的最新进展是由具有许多参数的大规模模型驱动的,而训练这样的模型LLM需要昂贵的硬件(即许多具有大量内存的昂贵GPU)和花哨的训练技术(例如,完全分片的数据并行训练)。
然后再对模型进行 finetuning 来更好满足自己的下游任务。那么对于如果要训练一个专家模型。预训练也是必不可缺的工作。不管是预训练还是 finetuning(微调),无论选用何种方案,都避免不了训练中产生的灾难性遗忘问题,那么怎么减少和避免这种情况的发生,也是本文想讲的一个重点。对于推理,在GPU资源不富裕的情况,如何最...
总体来说,Fine-tuning原理的核心是通过利用预训练模型的通用知识和新任务的特定数据来进行有针对性的优化...
1 基本信息 From:Fine-tuning 20B LLMs with RLHF on a 24GB consumer GPU (huggingface.co) Codes:trl/examples/sentiment/scripts/gpt-neox-20b_peft at main 
fine_tuning_tutorial.ipynb文件解读——利用fine-tuning方法调优2B的Gemma模型实现英法翻译任务 主要步骤 >> 准备数据集:使用公开可得的MTNT英法翻译数据集。为数据增加语言标记前缀和后缀,使用字符分词模型对数据进行分词。 >> 构建数据加载器:封装数据预处理和批量化处理的类,生成训练和验证数据集。
简介: 大语言模型(LLM)框架及微调 (Fine Tuning) 大语言模型(LLM)是指由大规模训练语言模型所得的模型。这些模型通常使用深度学习方法,在巨大的文本语料库上进行训练,以学习语言的各种结构、规则和特征。LLM在自然语言处理(NLP)任务中表现出色,如机器翻译、文本生成、问题回答等。 LLM框架由两个主要步骤组成:预...
lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 第一个参数:数据集的路径 第二个参数:模型的路径 ...
lora.yaml/ptuning.yaml/sft.yaml: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。 这里选择LoRA,配置文件中的参数描述如下: 训练模式 这里主要使用finetune_hf.py该文件进行微调操作。其中的参数 第一个参数:数据集的路径 第二个参数:模型的路径 ...