Chain-of-Thought(CoT)1.简介Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLMs在复杂推理任务上的表现,如算术推理(arithmetic reasoning)、常识推理(commonsense reasoning)、符号推理…
Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLMs在复杂推理任务上的表现,如算术推理(arithmetic reasoning)、常识推理(commonsense reasoning)、符号推理(symbolic reasoning)。 起源:CoT技术的概念是在Google的论文“Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”中被首次...
1.开山之作 chain of thought https://blog.research.google/2022/05/language-models-perform-reasoning-via.html跟不带chain of thought 的对比 它的prompt 1.1 小结这个key idea是,当要解决一个多步推理问题,…
然而,在面对复杂推理任务时,这些模型仍面临挑战。为了提升LLM在复杂推理问题上的表现,思维链(Chain-of-Thought, COT)作为一种有效的策略应运而生。特别是在百度智能云千帆大模型平台(点击此处了解更多)上,思维链的应用进一步推动了LLM的推理能力。本文将深入浅出地介绍思维链的基本概念、基础用法以及进阶玩法,帮助读者...
Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLMs在复杂推理任务上的表现,如算术推理(arithmetic reasoning)、常识推理(commonsense reasoning)、符号推理(symbolic reasoning)。 起源:CoT技术的概念是在Google的论文“Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”中被首次...
大语言模型的预训练6:思维链(Chain-of-thought,CoT)定义原理详解、Zero-shot CoT、Few-shot CoT 以及在LLM上应用 1.思维链定义 背景 在2017-2019 年之间,随着 Transformer 模型的提出,计算资源与大规模语料库不断出现,自然语言处理领域发生了翻天覆地的变化,传统的全监督学习的范式逐渐达到了瓶颈,很难在传统的训...
Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLMs在复杂推理任务上的表现,如算术推理(arithmetic reasoning)、常识推理(commonsense reasoning)、符号推理(symbolic reasoning)。 起源:CoT技术的概念是在Google的论文“Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”中被首次...
大语言模型的预训练[6]:思维链(Chain-of-thought,CoT)定义原理详解、Zero-shot CoT、Few-shot CoT 以及在LLM上应用 1.思维链定义 背景 在2017-2019 年之间,随着 Transformer 模型的提出,计算资源与大规模语料库不断出现,自然语言处理领域发生了翻天覆地的变化,传统的全监督学习的范式逐渐达到了瓶颈,很难在传统...
大语言模型的预训练[6]:思维链(Chain-of-thought,CoT)定义原理详解、Zero-shot CoT、Few-shot CoT 以及在LLM上应用 1.思维链定义 背景 在2017-2019 年之间,随着 Transformer 模型的提出,计算资源与大规模语料库不断出现,自然语言处理领域发生了翻天覆地的变化,传统的全监督学习的范式逐渐达到了瓶颈,很难在传统...
解锁LLMs的“思考”能力:Chain-of-Thought(CoT) 技术推动复杂推理的新发展 1.简介 Chain-of-Thought(CoT)是一种改进的Prompt技术,目的在于提升大模型LLMs在复杂推理任务上的表现,如算术推理(arithmetic reasoning)、常识推理(commonsense reasoning)、符号推理(symbolic reasoning)。