PATH = "./qdrant_db" client = QdrantClient(path=PATH) 这里我们使用的是Qdrant这个向量数据库,然后当我们指定一个./qdrant_db这个目录以后 他会把数据持久化到硬盘上. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 当然我们也可以指定使用 chromadb这个向量数据库. from llama_index.core import Vector...
本文将介绍一个无需一行代码即可实现RAG的开源工具:llamaindex-cli,该工具是基于llama-index实现的,并采用默认向量数据库Chroma,因此首先需要进行如下安装: pip install llama-index pip install chromadb Step1:设置OpenAI API Key环境变量 该工具默认采用OpenAI的API,因此需要配置OpenAI API Key,命令如下所示: $...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {{ message }} ru...
Examples of RAG using Llamaindex with local LLMs - Gemma, Mixtral 8x7B, Llama 2, Mistral 7B, Orca 2, Phi-2, Neural 7B - LlamaIndex-RAG-WSL-CUDA/environment.yml at master · marklysze/LlamaIndex-RAG-WSL-CUDA
Integration with SQL and Chroma DB vector databases Description This course begins by introducing foundational concepts of Large Language Models (LLMs) and their applications, focusing on LlamaIndex. You'll set up your development environment and create your first LlamaIndex program, covering essential...
分别用langchain及llamaindex实现RAG功能,要求如下:LLM为调用本机的ollama服务(模型:gemma:2b),embeding为“D:\models\bge-large-zh-v1.5”,知识库文件:insurance.txt。 知识库内容: 1、作为人寿保险的投保人,需要哪些条件? 解答:一般来说,18周岁以上(或16周岁以上、18周岁以下以自己的劳动收入作为生活来源)、...
Manas Dasgupta, from Bangalore, the Silicon Valley of India, holds an MSc in AI from Liverpool John Moores University (LJMU), UK. His expertise lies in Generative AI, Machine Learning, and Data Science, focusing on RAG Application Development with LangChain and LlamaIndex, and various supervised...
llama_pack import download_llama_pack from llama_index import VectorStoreIndex # download and install dependencies for benchmark dataset rag_dataset, documents = download_llama_dataset( "PaulGrahamEssayDataset", "./data" ) # build basic RAG system index = VectorStoreIndex.from_documents(documents=...
Example for integration with DSPy: classRag(dspy.Module):def__init__(self):super().__init__()db=chromadb.PersistentClient(path="./chroma_db")chroma_collection=db.get_or_create_collection("my_collection")vector_store=ChromaVectorStore(chroma_collection=chroma_collection)index=VectorStoreIndex....
from chromadb.config import ( # type: ignore Settings as ChromaSettings, ) from private_gpt.components.vector_store.batched_chroma import ( BatchedChromaVectorStore, ) except ImportError as e: raise ImportError( "'chromadb' is not installed." "To use PrivateGPT with Chroma, install the 'chr...