最近,Meta团队公开了支持长上下文的模型Llama 2 Long的训练方法,该模型的有效上下文窗口多达32768个token,在各种合成上下文探测、语言建模任务上都取得了显著的性能提升。论文链接:https://arxiv.org/pdf/2309.16039.pdf 并且,模型在指令调优的过程中不需要借助人工标注的长指令数据,70B参数量的模型就已经在各种...
通过大量实验,作者发现 SliceGPT 可以为 LLAMA-2 70B、OPT 66B 和 Phi-2 模型去除多达 25% 的模型参数(包括嵌入),同时分别保持密集模型 99%、99% 和 90% 的零样本任务性能。经过 SliceGPT 处理的模型可以在更少的 GPU 上运行,而且无需任何额外的代码优化即可更快地运行:在 24GB 的消费级 GPU 上,...
此外,Llama 2-70B模型也优于所有开源模型。除了和开源模型作比,Meta团队还将Llama 2-70B的结果与闭源模型进行了比较。如下表所示,Llama 2-70B在MMLU和GSM8K上的得分接近GPT-3.5,但在编码基准上有明显差距。在几乎所有的基准测试上,Llama 2-70B的结果都与PaLM 540B相当,甚至更好。而Llama 2-70B与GPT-4...
除了开源模型之外,Meta 还将 Llama 2 70B 的结果与闭源模型进行了比较,结果如下表 4 所示。Llama 2 70B 在 MMLU 和 GSM8K 上接近 GPT-3.5,但在编码基准上存在显著差距。此外,在几乎所有基准上,Llama 2 70B 的结果均与谷歌 PaLM (540B) 持平或表现更好,不过与 GPT-4 和 PaLM-2-L 的性能仍存在...
在七月中旬,Meta发布了其新的预训练和微调模型系列Llama-2,具有开源和商业特性,以便于使用和扩展。基础模型发布了聊天版本和7B、13B和70B的规模。与模型一起,还发表了相应的论文,描述了它们的特点和学习过程中的相关要点,提供了非常有趣的信息。 Llama 1的更新版本,使用了新的公开可用数据的混合进行训练。预训练语...
FreeWilly 是 Stability AI 开源的 LLaMA 2 微调模型,其性能与 ChatGPT 不相上下。此次开源中,发布了基于 LLaMA 2 70B 模型的微调模型 FreeWilly2,以及基于 LLaMA 65B 原始模型微调的 FreeWilly1。FreeWilly 使用基于标准 Alpaca 格式的全新合成数据集,并经过监督微调(SFT)的训练。在各项基准测试中,FreeWilly2 ...
也就是说,即使是参数量最大的 Llama 2 70B,性能目前也没有超过 GPT-3.5,距离 GPT-4 差距更大...
7月18日,Meta发布了Llama2-70B-Chat:一个在2万亿个文本令牌上预训练的70B参数语言模型,上下文长度为4096,在许多基准上优于所有开源模型,在质量上可与OpenAI的ChatGPT和Google PaLM-Bison等封闭专有模型相当。Meta通过商业上允许的许可证公开了该模型,使更广泛的ML社区能够从这项工作中学习,在此基础上进行构建,并...
最新的 7B~70B LLaMA2 大模型,则进一步提高了语言模型的基础能力。但由于 LLaMA2 的预训练预料大部分来自英文通用知识,而仅用微调能够提升和注入的领域知识和多语言能力也相对有限。此外,高质量的专业知识和数据集通常被视为各个行业和公司的核心资产,仅能以私有化形式保存。因此,以低成本预训练 / 继续预训练 ...
经过微调和对齐的模型Llama-2-70B-Chat(黄色)相比基座模型Llama-2-70B(绿色),综合能力基本持平,在语言、推理和理解上相比基座有性能提升,在学科综合能力和知识能力上略有下降。比如翻译评测集Flores和代码评测集HumanEval上,Chat模型分别有超过40%和20%的相对提升,而在MMLU和TrivialQA上则有大约10%的相对...