python convert.py --torch-path ~/Project/llama/llama-2-13b -q python llama.py --prompt "hello" #试一下是不是能正确运行 无论如何,你现在有了一套自己可以运行的 llama2-13B 了,虽然是在 mac 上。 你可以简单的分析一下下载到的权重文件,这个很重要。 请劳记下面的一层的权重内容有那些
在微调环节,研究者主要讨论参数高效微调方法(PEFT),展示 LoRA 和 QLoRA 在各种模型大小和硬件设置下的微调性能。使用序列长度为 350,批大小为 1,默认将模型权重加载到 bf16。结果如下表 IX 所示,使用 LoRA 和 QLoRA 微调 Llama2-13B 的性能趋势与 Llama2-7B 保持一致。与 lama2-7B 相比,微调 Llama2...
Step 2:下载Ziya-LLaMA-13B-v1的delta权重以及step 1中转换好的原始LLaMA权重,使用如下脚本转换:https://github.com/IDEA-CCNL/Fengshenbang-LM/blob/main/fengshen/utils/apply_delta.py python3 -m apply_delta --base ~/model_weights/llama-13b --target ~/model_weights/Ziya-LLaMA-13B --delta ~/m...
继LLaMA开源后,Meta今天联手微软高调开源Llama 2,一共有7B、13B、70B三个版本。据介绍,Llama 2接受了2万亿个token训练,上下文长度4k,是Llama 1的2倍。微调模型已在超100万个人类标注中进行了训练。Llama 2的表现更是秒杀许多开源语言模型,在推理、编码、能力和知识测试上取得了SOTA。最最最重要的是,这次Lla...
在容器内使用FasterTransformer将Llama2-Chinese-13b-Chat的权重转换为二进制 git clone https://github.com/Rayrtfr/FasterTransformer.git cd FasterTransformer mkdir models && sudo chmod -R 777 ./* python3 ./examples/cpp/llama/huggingface_llama_convert.py \ ...
彼时,Meta 提供多种尺寸的 LLaMA(7B、13B、33B 和 65B 参数)。仅从功能上来看,Llama 可以根据提示生成文本和代码,与其他类似聊天机器人的系统相当。然而,当时由于担心被滥用,Meta 决定限制对模型的访问,所以也只是对具有一定资格的研究者开放,还需要写申请表格等。不过,令人没想到的是,不久之后便有人将 ...
(在SQL数据集上,根据模型大小和微调方法预测准确率,LoRA微调模型的表现几乎可与全参数微调模型相当。需要注意的是,LoRA微调的13B模型的表现略优于全参数微调的7B模型。)3 LoRA与全参数微调:值得考虑的因素 尽管LoRA的设计初衷是作为全参数微调的替代方案,但在训练过程中,还是有一些值得注意的细微差别。任务类型...
Llama 2 模型一共有 7b、13b、34b、70b 4 个版本,其中折衷性能和效率,最受人关注的应该是 34b,但是 Meta 官方还没有释放其对应的权重。这里我们针对次优的 13b 版本进行了性能测试,来评估其部署的成本。模型部署我们选择了当下流行的 llama.cpp,分别测试了 8bit/4bit 量化的推理性能,通过反复执行样例 prompt...
相比之下,如果采用Llama 2 13B的原始量化权重,并且在本地设备上运行的话,实际效果还是不错的。模型在大加赞赏之余,虽然会产生Jürgen Schmidhuber已经赢得图灵奖的幻觉,但网友表示,这其实是老爷子应得的。为了证实自己的发现,这位网友又对比了Replicate API和Llama 2 13B的结果。果然,同样的情况出现了。对此,...
Llama 2 引入了一系列预训练和微调 LLM,参数量范围从 7B 到 70B (7B、13B、70B)。其预训练模型比 Llama 1 模型有了显著改进,包括训练数据的总词元数增加了 40%、上下文长度更长 (4k 词元🤯),以及利用了分组查询注意力机制来加速 70B 模型的推理🔥!但最令人兴奋的还是其发布的微调模型 (Llama 2-...