对于llama-cpp-python,入乡随俗使用 repo_id 变量名,但本质是和之前一致的,filename 可以使用通配符,比如 "*Q4_K_M.gguf"。 # 指定仓库的名称和文件名 repo_id = "bartowski/Mistral-7B-Instruct-v0.3-GGUF" filename = "Mistral-7B-Instruct-v0.3-Q4_K_M.gguf" #filename = "*Q4_K_M.gguf" ...
根据评论区大佬提示,llama-cpp-python似乎不支持后缀是.bin的模型,需要用llama.cpp重新量化模型,生成.gguf后缀的模型就可以了。 2023年11月10号更新 有人提醒llama-cpp-python最新版不支持ggmlv3模型,需要自己转python3 convert-llama-ggmlv3-to-gguf.py --input <path-to-ggml> --output <path-to-gguf>...
llama-cpp-python 安装报错可能涉及多种原因,包括缺少编译工具、依赖项不匹配、环境配置问题等。 在Windows系统上安装 llama-cpp-python 时遇到报错,通常是因为缺少必要的编译环境或依赖项。以下是一些可能的解决方案: 安装Microsoft Visual C++ Build Tools: llama-cpp-python 依赖C++编译环境。在Windows系统中,需要安装...
n_tokens = llama_cpp.llama_tokenize(ctx, b"Q: Name the planets in the solar system? A: ", tokens, max_tokens, add_bos=llama_cpp.c_bool(True)) llama_cpp.llama_free(ctx) 搭建与openai接口兼容的服务器接口 llama-cpp-python提供一个 Web服务器,旨在作为 OpenAI API 的直接替代品。 代码语言...
llama-cpp-python 推荐的玩法是自己编译,以下是关于cuda 支持编译的简单说明 参考构建命令 命令 exportCUDACXX=/usr/local/cuda-12.5/bin/nvcc# 此处核心是指定了nvcc 编译器路径,同时安装过cuda-drivers , 还需要配置环境变量 exportPATH=$PATH:/usr/local/cuda-12.5/bin/ ...
高级API提供Llama类,实现简单托管接口,具体操作包括指定模型路径等,返回值参照文档说明。低级API通过ctypes绑定llama.cpp库,完整API定义在llama_cpp/llama_cpp.py中,直接映射llama.h中的C API。搭建与OpenAI接口兼容的服务器,llama-cpp-python提供了一个web服务器作为替代方案。成功运行命令后,可访问...
ollama 在最新的版本中实现了函数调用,但是处理上还是有一些bug 的,llama-cpp-python web server 是利用了llama.cpp web server 同时进行了一些request 的处理,可以更好的兼容openai 支持了tools 函数调用,以下是基于llama-cpp-python web server 的 一个示例(注意需要模型支持函数调用,比如qwen2 就支持) ...
RUN CMAKE_ARGS="-DLLAMA_CUDA=on" pip install llama-cpp-python 这里直接进行了编译,实例化容器可以直接用。 # 构建镜像 sudo docker build -t llm:v1.0 . 这里提供一个脚本用于创建环境。 docker run \ -it \ --rm \ --name quantization \ ...
pip install llama-cpp-python \ --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/<cuda-version> Where <cuda-version> is one of the following: cu121: CUDA 12.1 cu122: CUDA 12.2 cu123: CUDA 12.3 cu124: CUDA 12.4 For example, to install the CUDA 12.1 wheel: pip insta...
首先,我们需要导入相关的库,包括llama_cpp_python、torch和numpy。这些库将帮助我们实现GPU加速。 AI检测代码解析 importllama_cpp_pythonimporttorchimportnumpyasnp 1. 2. 3. 加载模型 接下来,我们需要加载模型。假设我们已经有一个训练好的模型文件model.pth。