如果仅在 CPU 上运行,可以直接使用 pip install llama-cpp-python 进行安装。 否则,请确保系统已安装 CUDA,可以通过 nvcc --version 检查。 GGUF 以bartowski/Mistral-7B-Instruct-v0.3-GGUF 为例进行演示。你将在模型界面查看到以下信息:可以看到 4-bit 量化有 IQ4_XS,Q4_K_S, IQ4_NL,Q4_K_M 四种,...
根据评论区大佬提示,llama-cpp-python似乎不支持后缀是.bin的模型,需要用llama.cpp重新量化模型,生成.gguf后缀的模型就可以了。 2023年11月10号更新 有人提醒llama-cpp-python最新版不支持ggmlv3模型,需要自己转python3 convert-llama-ggmlv3-to-gguf.py --input <path-to-ggml> --output <path-to-gguf>...
搭建与openai接口兼容的服务器接口 llama-cpp-python提供一个 Web服务器,旨在作为 OpenAI API 的直接替代品。 代码语言:text AI代码解释 python3 -m llama_cpp.server --model models/7B/ggml-model.bin 你可以在上面的命令运行成功后访问文档 文档是全英的,想要对话接口的话我用python写了个示例 代码语言:text...
这里直接从Hugging Face Models存储库直接下载bin文件,然后将文件移动到根目录下的models目录中。 上面我们已经是说了,GGML是c++库,所以还需要使用Python调用C++的接口,好在这一步很简单,我们将使用llama-cpp-python,这是LLaMA .cpp的Python绑定,它在纯C/ c++中充当LLaMA模型的推理。cpp的主要目标是使用4位整数量化...
首先,我们需要导入相关的库,包括llama_cpp_python、torch和numpy。这些库将帮助我们实现GPU加速。 importllama_cpp_pythonimporttorchimportnumpyasnp 1. 2. 3. 加载模型 接下来,我们需要加载模型。假设我们已经有一个训练好的模型文件model.pth。 model=torch.load('model.pth') ...
在使用GPU加速llama_cpp_python之前,你需要编译llama_cpp_python库以支持GPU加速。 请按照以下步骤编译llama_cpp_python库: 克隆llama_cpp_python的GitHub仓库并进入仓库的根目录: gitclonecdllama_cpp_python 1. 2. 创建一个名为build的文件夹,并进入该文件夹: ...
llama-cpp-python 推荐的玩法是自己编译,以下是关于cuda 支持编译的简单说明 参考构建命令 命令 exportCUDACXX=/usr/local/cuda-12.5/bin/nvcc# 此处核心是指定了nvcc 编译器路径,同时安装过cuda-drivers , 还需要配置环境变量 exportPATH=$PATH:/usr/local/cuda-12.5/bin/ ...
通过llama-cpp-python web server 实现函数调用 ollama 在最新的版本中实现了函数调用,但是处理上还是有一些bug 的,llama-cpp-python web server 是利用了llama.cpp web server 同时进行了一些request 的处理,可以更好的兼容openai 支持了tools 函数调用,以下是基于llama-cpp-python web server 的...
5.在llama.cpp文件夹下新建目录models,把下载好的文件按照如下结构放入models文件里 6.安装python虚拟环境,执行如下命令创建虚拟环境并安装依赖: conda create -n pytorch_envpython=3.10conda activate pytorch_env pipinstalltorch numpy sentencepiece 7.转换模型文件为ggml FP16 format的格式,执行如下命令: ...