因此,Hugging Face 技术主管 Philipp Schmid 介绍了如何使用 PyTorch FSDP 和 Q-Lora,并在 Hugging Face 的 TRL、Transformers、peft 和 datasets 等库的帮助下,对 Llama 3 进行微调。除了 FSDP,作者还对 PyTorch 2.2 更新后的 Flash Attention v2 也进行了适配。微调主要步骤如下:设置开发环境创建并加载数据...
"flash_attention_2": 这个键对应的值是Qwen2FlashAttention2类。“Flash Attention”是一种优化了的注意力机制实现方式,旨在提高计算效率和减少内存使用。它通过利用稀疏矩阵乘法等技术来加速计算过程。 "sdpa": 这个键对应的值是Qwen2SdpaAttention类。SDPA(Scaled Dot-Product Attention)是指缩放点积注意力机制,这是...
在g5.12xlarge 服务器上,基于包含 1 万个样本的数据集,作者使用 Flash Attention 对 Llama 3 70B 进行 3 个 epoch 的训练,总共需要 45 小时。每小时成本为 5.67 美元,总成本为 255.15 美元。这听起来很贵,但可以让你在较小的 GPU 资源上对 Llama 3 70B 进行微调。 如果我们将训练扩展到 4x H100 GPU,...
在g5.12xlarge 服务器上,基于包含 1 万个样本的数据集,作者使用 Flash Attention 对 Llama 3 70B 进行 3 个 epoch 的训练,总共需要 45 小时。每小时成本为 5.67 美元,总成本为 255.15 美元。这听起来很贵,但可以让你在较小的 GPU 资源上对 Llama 3 70B 进行微调。 如果我们将训练扩展到 4x H100 GPU,...
因此,Hugging Face 技术主管 Philipp Schmid 介绍了如何使用 PyTorch FSDP 和 Q-Lora,并在 Hugging Face 的 TRL、Transformers、peft 和 datasets 等库的帮助下,对 Llama 3 进行微调。除了 FSDP,作者还对 PyTorch 2.2 更新后的 Flash Attention v2 也进行了适配。
在g5.12xlarge 服务器上,基于包含 1 万个样本的数据集,作者使用 Flash Attention 对 Llama 3 70B 进行 3 个 epoch 的训练,总共需要 45 小时。每小时成本为 5.67 美元,总成本为 255.15 美元。这听起来很贵,但可以让你在较小的 GPU 资源上对 Llama 3 70B 进行微调。 如果我们将训练扩展到 4x H100 GPU,...
在g5.12xlarge服务器上,基于包含 1 万个样本的数据集,作者使用 Flash Attention 对 Llama 3 70B 进行 3 个 epoch 的训练,总共需要 45 小时。每小时成本为 5.67 美元,总成本为 255.15 美元。这听起来很贵,但可以让你在较小的 GPU 资源上对 Llama 3 70B 进行微调。
相比于HF的flash attention技术,Unsloth微调的Llama3在VRAM使用上大大降低 Llama3可以在处理大量数据的...
多个样本被打包成一个单一序列,使用Flash Attention 2的无掩码可变序列长度特性,避免样本之间的交叉注意力干扰,如图3所示。由于训练数据样本长度高度异质,这种样本打包极大地提高了SFT的效率。作者选择了8192作为目标序列长度,以匹配Llama 3.1的原生训练上下文窗口,并且整体打包效率达到96%,这意味着只有4%的token是...
步骤一:准备Llama-3-8B模型 本案例提供了以下三种下载模型的方式,您可以根据需要选择其中一种。具体操作步骤如下: 进入PAI-DSW开发环境。 PAI控制台。 在页面左上方,选择使用服务的地域:华北6(乌兰察布)。 在左侧导航栏单击工作空间列表,在工作空间列表页面中单击待操作的工作空间名称,进入对应工作空间内。