在面对更复杂的“DAN攻击”“心理暗示”等检测时,Llama2-7B的表现更是力不从心。比如,当我们通过“DAN攻击”把一些敏感的关键词隐藏起来,再编造一个故事情景引导Llama2-7B(中文)回复时,就能够轻易地混淆它的视听,让它置身于某个情境里,丧失原则。此外,测评还发现,Llama2-7B(中文)对部分敏感关键词存在...
近日,一项由 Swin-Transformer 团队打造,来自西安交通大学、中国科学技术大学、清华大学和微软亚洲研究院的学者共同完成的研究工作 Xwin 颠覆了这一认知,揭示了通用预训练下 7B(即 70 亿参数)规模的语言模型(LLaMA-2-7B)在数学问题解决方面已经展现出较强的潜力,并可使用基于合成数据的有监督微调方法促使模型...
近日,一项由 Swin-Transformer 团队打造,来自西安交通大学、中国科学技术大学、清华大学和微软亚洲研究院的学者共同完成的研究工作 Xwin 颠覆了这一认知,揭示了通用预训练下 7B(即 70 亿参数)规模的语言模型(LLaMA-2-7B)在数学问题解决方面已经展现出较强的潜力,并可使用基于合成数据的有监督微调方法促使模型愈发稳定...
揭示了通用预训练下 7B(即 70 亿参数)规模的语言模型(LLaMA-2-7B)在数学问题解决方面已经展现出较强的潜力,并可使用基于合成数据的有监督微调方法促使模型愈发稳定地将数学能力激发出来。
在面对更复杂的“DAN攻击”“心理暗示”等检测时,Llama2-7B的表现更是力不从心。 比如,当我们通过“DAN攻击”把一些敏感的关键词隐藏起来,再编造一个故事情景引导Llama2-7B(中文)回复时,就能够轻易地混淆它的视听,让它置身于某个情境里,丧失原则。
近日,一项由 Swin-Transformer 团队打造,来自西安交通大学、中国科学技术大学、清华大学和微软亚洲研究院的学者共同完成的研究工作 Xwin 颠覆了这一认知,揭示了通用预训练下 7B(即 70 亿参数)规模的语言模型(LLaMA-2-7B)在数学问题解决方面已经展现出较强的潜力,并可使用基于合成数据的有监督微调方法促使模型愈发稳定...
在七月中旬,Meta发布了其新的预训练和微调模型系列Llama-2,具有开源和商业特性,以便于使用和扩展。基础模型发布了聊天版本和7B、13B和70B的规模。与模型一起,还发表了相应的论文,描述了它们的特点和学习过程中的相关要点,提供了非常有趣的信息。 Llama 1的更新版本,使用了新的公开可用数据的混合进行训练。预训练语...
研究团队首先仅使用 7.5K 数据,对 LLaMA-2-7B 模型指令微调,进而测评模型在 GSM8K 和 MATH 的表现。实验结果表明,当对每一个测试集中的问题从 256 个生成的答案中选择最佳答案时,测试准确率可分别高达 97.7% 和 72.0%,这一结果说...
本方案使用阿里云DSW对Llama-2-7B-Chat模型进行全参数微调。DSW是一款交互式建模平台,适合需要定制化微调模型并追求优化效果的开发者。 准备环境和资源 创建工作空间,详情请参见创建工作空间。 创建DSW实例,其中关键参数配置如下。具体操作,请参见创建DSW实例。
Llama2-7B-Chat大模型微调实战 Llama2系列是Meta开发并公开的大型语言模型(LLMs),有7B、13B和70B三种不同参数大小的模型,每种参数大小分别对应一个预训练和一个微调的版本。 微调版本称为Llama2-Chat,使用了和 ChatGPT 相似的技术,针对对话进行了优化。相比于 Llama1,Llama2的训练数据多了 40%,上下文长度翻倍,...