位置编码:对于Token序列中的每个位置,添加位置编码(Positional Encoding)向量,以提供关于Token在序列中位置的信息。位置编码是为了区分不同位置的Token,并为模型提供上下文关系的信息。 [p_{00},p_{01},p_{02},...,p_{0d-1}] [pe_{00},pe_{01},pe_{02},...,pe_{0d-1}] [p_{10},p_{11}...
position embeding可以参考【Transformer Architecture: The Positional Encoding】和【猛猿:Transformer学习笔记一:Positional Encoding(位置编码)】。 2.llama2模型 2.1 模型结构 从transformer的结构图可见,transformer可以分成2部分,encoder和decoder,而llama只用了tranformer的decoder部分,是decoder-only结构。目前大部分生成...
LLama2是MetaAI公司在2023年推出的一款半开源LLM(所谓半开源即为只有Inference没有Train过程),它是Llama的下一代版本,训练数据集2万亿token,上下文长度由llama的2048扩展到4096,可以理解和生成更长的文本,包括7B、13B、70B三个模型,展现出了卓越的性能,使其迅速在基准测试中崭露头角,标志着生成式人工智能领域的一次...
transformer论文中作者通过sin函数和cos函数交替来创建 positional encoding,其计算positional encoding的公式如下 其中,pos相当于是每个token在整个序列中的位置,相当于是0, 1, 2, 3...(看序列长度是多大,比如10,比如100), 代表位置向量的维度(也是词embedding的维度,transformer论文中设置的512维) 至于 是embedding向...
pe[:, 1::2] = (position div_term) pe = (0) _buffer('pe', pe) def forward(self, x): x = x + [:, :(1)] return x ``` 以上代码定义了一个名为PositionalEncoding的PyTorch模块,该模块在初始化时接受两个参数:d_model和max_len。d_model表示模型中嵌入的维度,max_len表示输入序列的最...
位置编码(Positional Encoding)在持续预训练中,LLAMA 2的原始架构基本没有变化,仅针对长距离信息捕获需求对位置编码进行了修改。通过对7B尺寸LLAMA 2模型的实验,研究人员发现了LLAMA 2的位置编码(PE)的一个关键局限性,即阻碍了注意力模块汇集远处token的信息。为了进行长上下文建模,研究人员假设该瓶颈来源于LLAMA...
在结构上,与Transformer模型相比,LLaMA2的主要变化是将其中的层标准化(LayerNorm)替换为了均方根标准化(RMSNorm),多头注意力(Multi-Head Attention)换成了分组查询注意力(GQA,在LLaMA中则是多查询注意力MQA),并将位置编码(Positional Encoding)替换为了旋转嵌入(Rotary Position Embedding,RoPE)。下面我们分别介绍RMS ...
位置编码(Positional Encoding) 在持续预训练中,LLAMA 2的原始架构基本没有变化,仅针对长距离信息捕获需求对位置编码进行了修改。 通过对7B尺寸LLAMA 2模型的实验,研究人员发现了LLAMA 2的位置编码(PE)的一个关键局限性,即阻碍了注意力模块汇集远处token的信息。
在结构上,与Transformer模型相比,LLaMA2的主要变化是将其中的层标准化(LayerNorm)替换为了均方根标准化(RMSNorm),多头注意力(Multi-Head Attention)换成了分组查询注意力(GQA,在LLaMA中则是多查询注意力MQA),并将位置编码(Positional Encoding)替换为了旋转嵌入(Rotary Position Embedding,RoPE)。下面我们分别介绍RMS ...
llama2 旋转位置编码 attention mask 代码在PyTorch 中,你可以使用以下代码实现位置编码和 attention mask。位置编码(Positional Encoding)通常用于Transformer模型中,以使模型能够理解输入序列中的位置信息。而 attention mask 用于屏蔽某些位置,防止模型在这些位置上产生无效的注意力。 以下是一个简单的例子,演示如何在 ...