在实际应用中,LoRA微调已经被广泛应用于各种NLP任务中。例如,在聊天机器人领域,开发者可以利用LoRA技术对Llama2-7B模型进行微调,使其更好地适应特定领域或场景的对话需求。此外,LoRA微调还可以用于文本分类、情感分析、机器翻译等多种NLP任务中。 六、总结 LoRA技术为大型预训练语言模型的微调提供了一种高效且实用的方...
虽然LoRA微调和模型量化代码走通了,但是里面涉及到很多细节知识点需要深挖,比如LoRA具体代码实现[4][5][6],peft库支持微调方法(LoRA|Prefix Tuning|P-Tuning v1|P-Tuning v2|Prompt Tuning|AdaLoRA|LLaMA-Adapter|IA3)和模型(Causal Language Modeling|Conditional Generation|Sequence Classification|Token Classificatio...
阿里云机器学习平台PAI第一时间针对 Llama2 系列模型进行适配,推出全量微调、Lora微调、推理服务等场景最佳实践,助力AI开发者快速开箱。以下我们将分别展示具体使用步骤。 最佳实践一:Llama 2 低代码 Lora 微调及部署 本实践将采用阿里云机器学习平台PAI-快速开始模块针对 Llama-2-7b-chat 进行开发。PAI-快速开始支持基...
PeftConfig# 例如: finetune_model_path='Llama2-Chinese-7b-LoRA'finetune_model_path=''#微调模型参数保存路径# 例如: base_model_name_or_path='meta-llama/Llama-2-7b'base_model_name_or_path=''#为预训练模型参数保存路径tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path,use_fast=...
(在SQL数据集上,根据模型大小和微调方法预测准确率,LoRA微调模型的表现几乎可与全参数微调模型相当。需要注意的是,LoRA微调的13B模型的表现略优于全参数微调的7B模型。)3 LoRA与全参数微调:值得考虑的因素 尽管LoRA的设计初衷是作为全参数微调的替代方案,但在训练过程中,还是有一些值得注意的细微差别。任务类型...
LoRA 旨在显著减少可训参数量,同时保持强大的下游任务性能。本文的主要目标是通过对 Hugging Face 的三个预训练模型进行 LoRA 微调,使之适用于序列分类任务。这三个预训练模型分别是: meta-llama/Llama-2-7b-hf、mistralai/Mistral-7B-v0.1 及 roberta-large。使用的硬件节点数: 1每个节点的 GPU 数: 1GPU ...
Parameter-Efficient Fine-Tuning(PEFT)可以用于在不触及LLM的所有参数的情况下对LLM进行有效的微调。PEFT支持QLoRa方法,通过4位量化对LLM参数的一小部分进行微调。Transformer Reinforcement Learning (TRL)是一个使用强化学习来训练语言模型的库。TRL也提供的监督微调(SFT)训练器API可以让我们快速的微调模型。!pip ...
本文的主要目标是通过对 Hugging Face 的三个预训练模型进行 LoRA 微调,使之适用于序列分类任务。这三个预训练模型分别是:meta-llama/Llama-2-7b-hf、mistralai/Mistral-7B-v0.1及roberta-large。 使用的硬件 节点数: 1 每个节点的 GPU 数: 1 GPU 类型: A6000 ...
LoRA:大型语言模型优化领域的游戏规则改变者 LLaMA 等开源 LLM 的出现激发了人们的极大兴趣和活动,因为它证明了,要实现最先进的性能,规模并不是一切。传统的 LLM 是庞然大物,因其训练、微调和运行成本高昂而臭名昭著。例如,GPT-3 拥有 1750 亿个参数!部署具有如此大参数数量的微调模型的独立实例将非常昂贵。
使用QLoRa微调Llama 2 上篇文章我们介绍了Llama 2的量化和部署,本篇文章将介绍使用PEFT库和QLoRa方法对Llama 27b预训练模型进行微调。我们将使用自定义数据集来构建情感分析模型。只有可以对数据进行微调我们才可以将这种大模型进行符合我们数据集的定制化。