return ("mle_loss", total_log_prob.numpy(), True) Returning as list throws an error, for example, feval_ret = ['mle_loss', -1.4523773, True] if isinstance(feval_ret, list): for eval_name, val, is_higher_better in feval_ret: pass will throw the error you me...
21 http://www.yemle.co/ DoFollow 22 http://www.bookmarkingbase.com/ DoFollow 23 http://www.mettablog.com/ DoFollow 24 http://www.dictaf.net/ DoFollow 25 http://www.jofrati.net/ DoFollow 26 http://www.addthismark.com/ DoFollow 27 http://www.activebookmarks.com/ DoFollow 28 http:...
赋值为int,比如n_components=1,将把原始数据降到一个维度。 赋值为string,比如n_components='mle',将自动选取特征个数n,使得满足所要求的方差百分比。 copy: 类型:bool,True或者False,缺省时默认为True。 意义:表示是否在运行算法时,将原始训练数据复制一份。若为True,则运行PCA算法后,原始训练数据的值不会有任...
E2B Code Interpreter - E2B is a tool that allows you to execute code in a secure sandbox withing a Jupyter-like notebook cell and return result @mlejva code api@^1.91.2 utils@^1.18.1 ai ai-tools Easy New File - Quickly create file in the open Finder window. @koinzhang code api@^...
此外,由于RL依赖于模型要初始化给训练提供warm-start,因此本文采用了一些基于模版的方法来构造一批伪对齐语料来pre-train f和g。此外,为了稳定RL训练,模型也加入了一个teacher-forcing的手段,利用back-translation构造的伪对齐数据通过MLE来训练的。MLE和RL交替训练更新模型。
Machine Learning Engineering (http://www.mlebook.com/wiki/doku.php) Approaching (Almost) Any Machine Learning Problem (https://github.com/abhishekkrthakur/approachingalmost/blob/master/AAAMLP.pdf) The fastai book (https://github.com/fastai/fastbook) https://books.google.com.sg/books?id=yATu...
SteinGAN -Learning Deep Energy Models: Contrastive Divergence vs. Amortized MLE StepGAN -Improving Conditional Sequence Generative Adversarial Networks by Stepwise Evaluation Super-FAN -Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary po...
Since the collapsed data is a reduction of the pooled data, the collapsed data MLE is less efficient than the pooled data MLE. Kuket al.[29] showed that the loss of estimation efficiency due to the collapsing of pooled data is not large for rare variants and small pool size. However,...
robot_pose_mle.cc /usr/share/doc/ceres-solver-doc/examples/robust_curve_fitting.cc /usr/share/doc/ceres-solver-doc/examples/rosenbrock.cc /usr/share/doc/ceres-solver-doc/examples/rosenbrock_analytic_diff.cc /usr/share/doc/ceres-solver-doc/examples/rosenbrock_numeric_diff.cc /usr/share/doc/...
Amortized MLE StepGAN - Improving Conditional Sequence Generative Adversarial Networks by Stepwise Evaluation Super-FAN - Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs SVSGAN - SVSGAN: Singing Voice Separation via...