2.代谢组学文献分享—LiP-SMap法技术路线与方法验证 如图1,与之前的Lip-SRM法[1,5]类似,首先在非变性的条件下提取蛋白质,然后将提取的蛋白分为两组,一组加入小分子代谢物,让其与蛋白质相互作用,另一组不进行任何处理;再加入广谱的蛋白酶K(PK)产生结构特异性蛋白片段;得到的特异片段再经序列特异性的Try...
此外,该团队也通过实验进一步证明,LiP-SMap法能用于鉴定新的酶-底物相互作用和竞争性抑制位点。 图4 代谢物与蛋白质结合位点的分析(A: 酶-代谢物复合物结构活性位点中所有检测到的肽段与变构肽段的最小距离分布; B and C: 活性位点分布; D: 活性位点和远端位点分布; E: 代谢物与酶结合位点分布,绿色-结合...
2.代谢组学文献分享—LiP-SMap法技术路线与方法验证 如图1,与之前的Lip-SRM法[1,5]类似,首先在非变性的条件下提取蛋白质,然后将提取的蛋白分为两组,一组加入小分子代谢物,让其与蛋白质相互作用,另一组不进行任何处理;再加入广谱的蛋白酶K(PK)产生结构特异性蛋白片段;得到的特异片段再经序列特异性的Trypsin酶...
2.代谢组学文献分享—LiP-SMap法技术路线与方法验证 如图1,与之前的Lip-SRM法[1,5]类似,首先在非变性的条件下提取蛋白质,然后将提取的蛋白分为两组,一组加入小分子代谢物,让其与蛋白质相互作用,另一组不进行任何处理;再加入广谱的蛋白酶K(PK)产生结构特异性蛋白片段;得到的特异片段再经序列特异性的Trypsin酶...
2. 代谢组学文献分享—LiP-SMap法技术路线与方法验证 如图1,与之前的Lip-SRM法[1,5]类似,首先在非变性的条件下提取蛋白质,然后将提取的蛋白分为两组,一组加入小分子代谢物,让其与蛋白质相互作用,另一组不进行任何处理;再加入广谱的蛋白酶K(PK)产生结构特异性蛋白片段;得到的特异片段再经序列特异性的Trypsin...
2.代谢组学文献分享—LiP-SMap法技术路线与方法验证 如图1,与之前的Lip-SRM法[1,5]类似,首先在非变性的条件下提取蛋白质,然后将提取的蛋白分为两组,一组加入小分子代谢物,让其与蛋白质相互作用,另一组不进行任何处理;再加入广谱的蛋白酶K(PK)产生结构特异性蛋白片段;得到的特异片段再经序列特异性的Trypsin酶...
2.代谢组学文献分享—LiP-SMap法技术路线与方法验证 如图1,与之前的Lip-SRM法[1,5]类似,首先在非变性的条件下提取蛋白质,然后将提取的蛋白分为两组,一组加入小分子代谢物,让其与蛋白质相互作用,另一组不进行任何处理;再加入广谱的蛋白酶K(PK)产生结构特异性蛋白片段;得到的特异片段再经序列特异性的Trypsin酶...