我自己编造了一个数据,然后看一下代码实现 importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimportstatsmodels.apiassmdata=pd.read_csv("./Data/Simpe Linear Regression Example Data.txt",sep="\t")x=data["x"]y=data["y"]print(x.head())print(y.head())###046.75142.18241.86343.29442.12Nam...
5. Pytorch教程:Linear Regression的numpy和Autograd实现, 视频播放量 1181、弹幕量 0、点赞数 36、投硬币枚数 24、收藏人数 23、转发人数 5, 视频作者 饭客帆, 作者简介 微软工程师一枚,相关视频:【吴恩达】2024年公认最好的【LLM大模型】教程!大模型入门到进阶,一套
算法python实现 1.算法python代码 包含Normal Equations,批量梯度下降和随机梯度下降,这里的代码跟Logistic回归的代码类似 # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np class LinearRegression(object): def __init__(self): self._history_w = [] self._cost = [] def...
python 如何看LR模型的系数 linear regression python Task1:Linear regression with one variable 首先先引入库 import numpy as np import pandas as pd import matplotlib.pyplot as plt 1. 2. 3. 用课程所给的数据生成表以及散点图 path='E:\xxx\machine learning\ex1data1.txt'//本地磁盘绝对路径 data=...
01 实现Simple Linear Regression 1. 准备数据阶段: import numpy as np import matplotlib.pyplot as plt x = np.array([1., 2., 3., 4., 5.]) y = np.array([1., 3., 2., 3., 5.]) plt.scatter(x, y) plt.axis([0, 6, 0, 6]) ...
2.用Python自己实现算法 三、思考(面试常问) 参考 前言 线性回归(Linear Regression)基本上可以说是机器学习中最简单的模型了,但是实际上其地位很重要(计算简单、效果不错,在很多其他算法中也可以看到用其其作为一部分)。机器学习所针对的问题有两种:一种是回归,一种是分类。回归是解决连续数据的预测问题,而分类是...
学习Linear Regression in Python – Real Python,前面几篇文章分别讲了“regression怎么理解“,”线性回归怎么理解“,现在该是实现的时候了。 线性回归的 Python 实现:基本思路 导入Python 包: 有哪些包推荐呢? Numpy:数据源 scikit-learn:ML statsmodels: 比scikit-learn功能更强大 ...
import numpy as np from sklearn.linear_model import LinearRegression X = np.array([ [1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 model = LinearRegression() model.fit(X, y) X_test = np.array([[3, 5], [4, 6]]) ...
importmatplotlib.pyplotaspltimportnumpyasnpdefgen_reg_data():X=np.arange(0,45,0.1)X=X+np.random.random(size=X.shape[0])*20y=2*X+np.random.random(size=X.shape[0])*20+10returnX,ydeftest_linear_regression():clf=LinearRegression()X,y=gen_reg_data()clf.fit(X,y)plt.plot(X,y,'....
线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Sepal.Length,画出它们的散点图。我们希望可以构建一个函数去预测Sepal.Length,当我们输入Petal.Width时,可以返回一个预测的Sepal.Length。从散点图可以发现,可以用一条直线去拟合...